11 resultados para Clean tungsten
em Aston University Research Archive
Resumo:
The most perfectly structured metal surface observed in practice is that of a field evaporated field-ion microscope specimen. This surface has been characterised by adopting various optical analogue techniques. Hence a relationship has been determined between the structure of a single plane on the surface of a field-ion emitter and the geometry of a binary zone plate. By relating the known focussing properties of such a zone plate to those obtained from the projected images of such planes in a field-ion micrograph, it is possible to extract new information regarding the local magnification of the image. Further to this, it has been shown that the entire system of planes comprising the field-ion imaging surface may be regarded as a moire pattern formed between over-lapping zone plates. The properties of such moire zone plates are first established in an analysis of the moire pattern formed between zone plates on a flat surface. When these ideas are applied to the field-ion image it becomes possible to deduce further information regarding the precise topography of the emitter. It has also become possible to simulate differently proJected field-ion images by overlapping suitably aberrated zone plates. Low-energy ion bombardment is an essential preliminary to much surface research as a means of producing chemically clean surfaces. Hence it is important to know the nature and distribution of the resultant lattice damage, and the extent to which it may be removed by annealing. The field-ion microscope has been used to investigate such damage because its characterisation lies on the atomic scale. The present study is concerned with the in situ sputtering of tungsten emitters using helium, neon, argon and xenon ions with energies in the range 100eV to 1keV, together with observations of the effect of annealing. The relevance of these results to surface cleaning schedules is discussed.
Resumo:
The bearings in the air motors of modern jet aircraft engines must operate dry in hostile conditions at temperatures up to 500° C, where the thrust races in the actuators operate at temperatures up to 300° C. One of the few metallurgical combinations which can function efficiently under these conditions is martensitic stainless steel on tungsten carbide. The work described was initiated to isolate the wear mechanisms of two such steels in contact with tungsten carbide at temperatures up to 500° C. Experiments were carried out on angular contact bearings similar to these used in service, where both rolling and sliding is present and also for pure sliding conditions using a pin-on-disc apparatus. Wear measurements of the bearings were obtained with wear rates, friction and surface temperatures from the pin-on-disc machine for a series of loads and speeds. Extensive X-ray diffraction analysis was carried out on the wear debris, with also S.E.M. analysis and hardness tests on the worn surfaces along with profilometry measurements of the disc. The oxidational parameters of the steel were obtained from measurements of oxide growth rates by ellipsometry. Three distinct mechanisms of wear were established and the latter two were found to be present in both configurations. These involve an oxidational-abrasive mechanism at loads below 40 N with pin surface temperatures up to about 300 °C, with the mechanism changing to severe wear for higher loads. As the temperature increases a third wear mechanism appears due to transfer of relatively soft oxide films to the steel surface reducing the wear rate. Theoretical K factors were derived and compared with experimental values which were found to be in good agreement for the severe wear mechanism. The pin-on-disc experiments may be useful as a screening test for material selection, without the considerable cost of producing the angular contact bearings.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Reactive, but not a reactant. Heterogeneous catalysts play an unseen role in many of today's processes and products. With the increasing emphasis on sustainability in both products and processes, this handbook is the first to combine the hot topics of heterogeneous catalysis and clean technology. It focuses on the development of heterogeneous catalysts for use in clean chemical synthesis, dealing with how modern spectroscopic techniques can aid the design of catalysts for use in liquid phase reactions, their application in industrially important chemistries - including selective oxidation, hydrogenation, solid acid- and base-catalyzed processes - as well as the role of process intensification and use of renewable resources in improving the sustainability of chemical processes. With its emphasis on applications, this book is of high interest to those working in the industry.
Resumo:
The rational design of new heterogeneous catalysts for clean chemical technologies can be accelerated by molecular level insight into surface chemical processes. In-situ methodologies, able to provide time-resolved and/or pressure dependent information on the evolution of reacting adsorbed layers over catalytically relevant surfaces, are therefore of especial interest. Here we discuss the application of in-situ XPS and in-situ, synchronous DRIFTS/MS/XAS methodologies to elucidate the active site in Pd-catalyzed, selective aerobic oxidation of allylic alcohols.
Resumo:
The rational design of new heterogeneous catalysts for clean chemical technologies can be accelerated by molecular level insight into surface chemical processes. In situ methodologies, able to provide time-resolved and/or pressure dependent information on the evolution of reacting adsorbed layers over catalytically relevant surfaces, are therefore of especial interest. Here we discuss recent applications of surface X-ray techniques to surface-catalysed oxidations, (de)hydrogenations, C-C coupling, dehalogenation and associated catalyst restructuring, and explore how these may help to shape future sustainable chemistry. © 2010 The Royal Society of Chemistry.
Resumo:
A series of zirconium phosphate supported WOx solid acid catalysts with W loadings from 1–25 wt% have been prepared on high surface area zirconium phosphate by a surface grafting method. Catalysts were characterized by N2 adsorption, FTIR, Raman, UV-Vis, 31P MAS NMR, pyridine TPD and X-ray methods. Spectroscopic measurements suggest a Keggin-type structure forms on the surface of zirconium phosphate as a ([triple bond, length as m-dash]ZrOH2+)(ZrPW11O405−) species. All catalysts show high activity in palmitic acid esterification with methanol. These materials can be readily separated from the reaction system for re-use, and are resistant to leaching of the active heteropolyacid, suggesting potential industrial applications in biodiesel synthesis. © The Royal Society of Chemistry 2006.
Resumo:
The adsorption and decomposition of ethylene over a Pt{111} single crystalsurface has been investigated by fast x-ray spectroscopy. At 100 K ethene displays precursor-mediated adsorption kinetics, adopting a single environment with a saturation C2H4 coverage of 0.25 ML and binding energy of 283.2 eV. Thermal decomposition proceeds above 240 K via dehydrogenation to ethylidyne with an activation barrier of 57±3 kJ mol−1 and preexponential factor ν=1×1010±0.5 s−1. Site-blocking by preadsorbed SO4 reduces the saturation ethene coverage but induces a new, less reactive π-bonded ethene species centered around 283.9 eV, which in turn decomposes to ethylidyne at 350 K.
Resumo:
The thermal decomposition of propene over clean and sulphate precovered Pt{111} has been followed by Fast XPS. The saturation propene coverage over the clean surface is 0.21 mL at 90 K. Propene is stable up to 200 K, above which molecular desorption and dehydrogenation result in the formation of a stable propylidyne intermediate adlayer at 300 K. Propylidyne decomposes above 400 K eventually forming graphitic carbon above 800 K. Preadsorbed surface sulphate promotes room temperature propene combustion associated with the decomposition of a thermally unstable alkyl--sulphate complex. Propylidyne also forms as on clean Pt{111}, but is less reactive, its decomposition above 450 K triggering partial oxidation with residual surface oxygen to liberate gas phase CO.