3 resultados para Clay minerals adsorbents

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mõssbauer spectroscopy and X-ray diffraction of five coals revealed the presence of pyrite, illite, kaolinite and Quartz, together with other minor phases. Analysis of the coal ashes indicated the formation of hematite and an Fe (3+) paramagnetic phase, the latter resulting from .the dehydroxylation of the clay minerals during ashing at 700 to 750 C. By using a combination of several physicochemical methods, different successive stages of dehydroxylation, structural consolidation, and recrystallisation of illite, montmorillonite and hectorite upon thermal treatment to 1300 C were investigated. Dehydroxylation of the clay minerals occurred between 450 and 750 C, the X-ray crysdallinity of illite and montmorillonite remaining until 800 C. Hectorite gradually recrystallises to enstatite at temperatures above 700°C. At 900 C the crystalline structure of all three clay minerals had totally collapsed. Solid state reactions occurred above 900 C producing such phases as spinel, hematite, enstatite, cristobalite and mullite. Illite and montmorillonite started to melt between 1200 and 1300°C, producing a silicate glass that contained Fe(3+) and Fe(2+) ions. Ortho-pnstatite, clino-enstatite and proto-enstatite were identified in the thermal products of hectorite, their relative proportions varying with temperature. Protoenstatite was stabilised with respect to metastable clinoenstatite upon cooling from 12000 C by the presence of exchanged transition metal cations. Solid state Nuclear Magnetic Resonance spectroscopy of thermally treated transition metal exchanged hectorite indicated the levels at which paramagnetic cations could be loaded on to the clay before spectral resolution is significantly diminished.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suitable methods for the assessment of the effect of freeze-thaw action upon ceramic tiles have been determined. The results obtained have been shown to be reproducible with some work in this area still warranted. The analysis of Whichford Potteries clays via a variety of analytical techniques has shown them to be a complex mix of both clay and non-clay minerals. 57Fe Mössbauer spectroscopy has highlighted the presence of both small and large particleα-Fe203, removable via acid washing. 19F MAS NMR has demonstrated that the raw Whichford Pottery clays examined have negligible fluorine content. This is unlikely to be detrimental to ceramic wares during the heating process. A unique technique was used for the identification of fluorine in solid-state systems. The exchange of various cations into Wyoming Bentonite clay by microwave methodology did not show the appearance of five co-ordinate aluminium when examined by 27Al MAS NMR. The appearance of Qo silicate was linked to an increase in the amount of tetrahedrally bound aluminium in the silicate framework. This is formed as a result of the heating process. The analysis of two Chinese clays and two Chinese clay raw materials has highlighted a possible link between the two. These have also been shown to be a mix of both clay and non-clay minerals. Layered double hydroxides formed by conventional and microwave methods exhibited interesting characteristics. The main differences between the samples examined were not found to be solely attributable to the differences between microwave and conventional methods but more attributable to different experimental conditions used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern electron optical techniques together with X-ray and mineralogical examination have been used to study the occurrence and form of phosphorus bearing minerals in iron ores. Three ores have been studied - Bahariya and Aswan from Egypt and Frodingham ironstone from U.K. The iron in the Bahariya iron ore is mainly as hematite and goethite. The gangue minerals are halite, gypsum, barytes, quartz and calcite. Iron content is between 49.8 to 63.2% and phosphorus 0.14 to 0.34%. The phosphorus occurs as very fine particles of apatite which are distributed throughout the ore. Removal of the phosphorus would require very fine grinding followed by acid leaching. Aswan iron ore is an oolitic iron ore; the iron content between 41-57% and phosphorus content 0.1 to 2.9%. It is mainly hematitic with variable quantities of quartz, apatite and small amount of clay minerals. In the oolitic iron ore beds, apatite occurs in the hematite matrix; filling in the pores of the oolithic surfaces, or as matrix cementing the ooliths with the hematite grains. In sandstone claybeds the distribution of the apatite is mainly in the matrix. It is suggested that the liberation size for the apatite would be -80 m and flotation concentration could be applied for the removal of apatite from Aswan ore. Frodingham ironstone occurs in the lower Jurassic bed of the South Humberside area. The average iron content is 25% and the phosphorus is 0.32%. Seven mineral phases were identified by X-ray; calcite, quartz, chamosite, hematite, siderite, apatite, and chlorite. Apatite occurs as very fine grains in the hematite and chamosite ooliths; as matrix of fine grains intergrown with chamosite and calcite grains; and as anhedral and sub rounded grains in the ooliths (8-28 m). It is suggested that two processes are possible for the dephosphorisation; the Flox process or a reduction roast followed by fine grinding, magnetic separation, and acid leaching.