286 resultados para Circular gratings
em Aston University Research Archive
Resumo:
We have theoretically and experimentally investigated the dual-peak feature of tilted fiber gratings with excessively tilted structure (named as Ex-TFGs). We have explained the dual-peak feature by solving eigenvalue equations for TM0m and TE0m of a circular waveguide, in which the TE (transverse electric) and TM (transverse magnetic) core modes are coupled into TE and TM cladding modes, respectively. Meanwhile, in the experiment, we have verified that one of the dual peaks at the shorter wavelength is due to the TM mode coupling whereas the other one at the longer wavelength arises from TE mode coupling when a linearly polarized light launched into the Ex-TFG. We have also investigated the peak separation of TE and TM cladding mode for different surrounding medium refractive indexes (SRI), revealed that the dual peaks separation is decreasing as increasing of SRI, which agrees very well with the theoretical analysis results.
Resumo:
The distinct behaviour of femtosecond laser inscribed long period gratings, with a non-uniform index perturbation within the optical fibre core, has been studied experimentally. The non-uniform laser-induced perturbation results in light coupling from the core mode to a greater number of cladding modes than is the case with their UV laser inscribed counterparts, and this is made evident from the surrounding refractive index (SRI) grating response. Femtosecond inscribed long period gratings are shown to simultaneously couple to multiple sets of cladding modes. A 400μm LPG is shown to result in attenuation peaks that have both blue and red wavelength shifts over a 1250nm to 1700nm wavelength range. This gives rise to SRI sensitivities far greater than anything achievable by monitoring a single attenuation peak. The maximum sensitivity produced by monitoring a single attenuation peak was 1106nm/RIU, whereas monitoring opposing wavelength shifts resulted in a significantly improved sensitivity of 1680nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
A long-period grating (LPG) was written into a progressive three-layered single-mode fiber that was embedded into a flexible platform as a curvature sensor. The spectral location and profile of the LPGs were unaltered after implantation in the platform. The curvature sensitivity was 3.747 nm m with a resolution of ± 1.1 × 10-2 m-1. The bend sensor is intended to be part of a respiratory monitoring system and was tested on a resuscitation training manikin. © 2003 society of Photo-Optical Instrumentation Engineers.
Apodisation of photo-induced waveguide gratings using double-exposure with complementary duty cycles
Resumo:
We present a novel apodisation scheme for photo-induced waveguide gratings. The apodisation is implemented with double exposures that have reversely varying duty cycles. We have successfully applied the proposed scheme to remove the sidelobes of long period gratings (LPGs). We also observed for the first time super strong sidelobes in LPGs when creating them with only a single varying-duty-cycle exposure. The strong sidelobes can be well explained with a Mach-Zehnder interference model.
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm·m for curvature and 2.2×10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
We describe an all-fibre, passive scheme for making extended range interferometric measurements based on the dual wavelength technique. The coherence tuned interferometer network is illuminated with a single superfluorescent fibre source at 1.55 µm and the two wavelengths are synthesised at the output by means of chirped fibre Bragg gratings. We demonstrate an unambiguous sensing range of 270 µm, with a dynamic range of 2.7 × 10 5.
Resumo:
We demonstrate a dual-wavelength fibre laser system using chirped fibre Bragg gratings as reflectors and dispersive elements. The system produces two synchronized trains of soliton pulses with rms jitter of 620 fs.
Resumo:
Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.
Resumo:
We report a distinctive polarization mode coupling behaviour of tilted fibre Bragg gratings (TFBGs) with a tilted angle exceeding 45°. The ex-45° TFBGs exhibit pronounced polarization mode splitting resulted from the birefringence induced by the grating structure asymmetry. We have fabricated TFBGs with a tilted structure at 81° and studied their properties under transverse load applied to their equivalent fast and slow axes. The results show that the light coupling to the orthogonally polarized modes of the 81°-TFBGs changes only when the load is applied to their slow axis, giving a prominent directional loading response. For the view of real applications, we further investigated the possibility of interrogating such a TFBG-based load sensor using low-cost and compact-size single wavelength source and power detector. The experimental results clearly show that the 81°-TFBGs plus the proposed power-measurement interrogation scheme may be developed to an optical fibre vector sensor system capable of not just measuring the magnitude but also recognizing the direction of the applied transverse load. Using such an 81°-TFBG based load sensor, a load change as small as 1.6 × 10-2 g may be detected by employing a standard photodiode detector.
Resumo:
A novel optical chemsensor concept based on the cladding etched Bragg gratings in D-fiber is demonstrated. Two etched devices have been used to measure the concentrations of sugar solution, giving sensitivity as high as 0.02nm/%.
Resumo:
The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.
Resumo:
We present, for the first time to our knowledge, experimental evidence showing that superimposed blazed fiber Bragg gratings may be fabricated and used to extend the dynamic range of a grating-based spectrometer. Blazed gratings of 4° and 8° were superimposed in germanosilicate fiber by ultraviolet inscription and used in conjunction with a coated charged-coupled device array to interrogate a wavelength-division-multiplexing sensor array. We show that the system can be used to monitor strain and temperature sensors simultaneously with an employable bandwidth which is extendable to 70 nm.
Resumo:
The authors demonstrate that in-fibre Bragg gratings may be successfully used to measure megahertz acoustic fields if the grating length is sufficiently short and the optical fibre is appropriately desensitised. A noise-limited pressure resolution of 4.5 × 10 –3 atm vHz was found. The capability to simultaneously act as a temperature sensor is also demonstrated.
Resumo:
This paper compares the environmental sensing behaviour of long period gratings written in three fibers with different refractive index profiles: step, W and a progressive three layered fiber. The measurands considered are temperature, refractive index, axial strain and bending, and the spectral behaviour of individual attenuation bands were observed and, where possible, compared to theoretical predictions. Significant differences in the behaviour of the three fiber types were found.