4 resultados para Chromium alloys.

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fracture properties of a series of alloys containing 15% chromium and 0.8 to 3.4% carbon are investigated using strain fracture toughness testing techniques. The object of the work is to apply a quantitative method of measuring toughness to abrasion resistant materials, which have previously been assessed on an empirical basis; and to examine the relationship between microstructure and K10 in an attempt to improve the toughness of inherently brittle materials. A review of the relevant literature includes discussion of the background to the alloy series under investigation, a survey of the development of fracture mechanics and the emergence of K10 as a toughness parameter. Metallurgical variables such as composition, heat treatment, grain size, and hot working are ???? to relate microstructure to toughness, and fractographic evidence is used to substantiate the findings. The results are applied to a model correlating ductile fracture with plastic strain instability, and the nucleation of voids. Strain induced martensite formation in austenitic structures is analysed in terms of the plastic energy dissipation mechanisms operating at the crack tip. Emphasis is placed on the lower carbon alloys in the series, and a composition put forward to optimise wear resistance and toughness. The properties of established competitive materials are compared to the proposed alloy on a toughness and cost basis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The precipitation reactions occurring in a series of copper-based alloys selected from the system copper-chromium-zirconium have been studied by resistometric and metallographic techniques. A survey of the factors influencing the development of copper-based alloys for high strength, high conductivity applications is followed by a more general review of contemporary materials, and illustrates that the most promising alloys are those containing chromium and zirconium. The few systematic attempts to study alloys from this system have been collated, discussed, and used as a basis for the selection of four alloy compositions viz:- Cu - 0.4% Cr Cu - 0.24. Zr Cu - 0. 3% Cr - 0.1% Zr Cu - 0.2% Cr - 0.2% Zr A description of the experimental techniques used to study the precipitation behaviour of these materials is preceeded by a discussion of the currently accepted theories relating to precipitate nucleation and growth. The experimental results are presented and discussed for each of the alloys independently, and are then treated jointly to obtain an overall assessment of the way in which the precipitation kinetics, metallography and mechanical properties vary with alloy composition and heat treatment. The metastable solid solution of copper-chromium is found to decompose by the rejection of chromium particles which maintain a coherent interface and a Kurdjumov-Sachs type crystallographic orientation relationship with the copper matrix. The addition of 0.1% zirconium to the alloy retards the rate of transformation by a factor of ten and modifies the dispersion characteristics of the precipitate without markedly altering the morphology. Further additions of zirconium lead to the growth of stacking faults during ageing, which provide favourable nucleation sites for the chromium precipitate. The partial dislocations bounding such stacking faults are also found to provide mobile heterogeneous nucleation sources for the precipitation reactions occurring in copper-zirconium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminium alloys S1C, NS4, HE9, LM25 and the 'difficult' zinc containing U.S. specification alloy used for automobile bumpers (X-7046), have been successfully electroplated using pretreatments which utilized either conventional immersion, elevated temperature or electrolytic modified alloy zincate (M.A.Z.) deposits. Satisfactory adhesion in excess of 7•5 KN m -I was only achieved on X-7046 using an electrolytic M.A.Z. pretreatment. The limitations of simple zincate solutions were demonstrated. Growth of deposits ~as monitored using a weight loss technique and the morphology of the various deposits studied using scanning electron microscopy. The characteristics of a specific alloy and processing sequence selected had a significant influence on the growth and morphology of the N.A.Z. deposi t. These all affected subsequent adhesion of electrodeposited nickel. The advantages of double-dip sequences were confirmed. Superior adhesion was associated with a uniform, thin, fine grained M.A.Z. deposit which exhibited rapid and complete surface coverage of the aluminium alloy. The presence of this preferred type deposit did not guarantee adhesion because a certain degree of etching was essential. For a satisfactory combination of alloy and M.A.Z. pretreatment, there was a specific optimum film weight per unit area which resulted in maximum adhesion. An ideal film weight of 0•06 :!: 0•01 mg cm-2was determined for S1C. Different film weights were required for the other alloys due to variations in surface topography caused by pretreatment. S1C was the easiest alloy on which to achieve high bond strength. Peel adhesion was not directly related to tensile strength of the alloy. The highest adhesion value was obtained on S1C which had the lowest strength of the alloys studied. The characteristics of the failure surfaces after peeling depended on alloy type, adhesion level and pretreatment employed. Plated aluminium alloys exhibited excellent corrosion resistance when appropriately pretreated. The M.A.Z. layer was not preferentially attacked. There was a threshold value of adhesion below which corrosion performance ~a8 poor. Alloy type, pretreatment and coating system influenced corrosion performance. Microporous chromium gave better corrosion protection than decorative chromium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The.use of high-chromium cast irons for abrasive wear resistance is restricted due to their poor fracture toughness properties. An.attempt was made to improve the fracture characteristics by altering the distribution, size and.shape of the eutectic carbide phase without sacrificing their excellent wear resistance. This was achieved by additions of molybdenum or tungsten followed by high temperature heat treatments. The absence of these alloying elements or replacement of them with vanadium or manganese did not show any significant effect and the continuous eutectic carbide morphology remained the same after application of high temperature heat treatments. The fracture characteristics of the alloys with these metallurgical variables were evaluated for both sharp-cracks and blunt notches. The results were used in conjunction with metallographic and fractographic observations to establish possible failure mechanisms. The fracture mechanism of the austenitic alloys was found to be controlled not only by the volume percent but was also greatly influenced by the size and distribution of the eutectic carbides. On the other hand, the fracture mechanism of martensitic alloys was independent of the eutectic carbide morphology. The uniformity of the secondary carbide precipitation during hardening heat treatments was shown to be a reason for consistant fracture toughness results being obtained with this series of alloys although their eutectic carbide morphologies were different. The collected data were applied to a model which incorporated the microstructural parameters and correlated them with the experimentally obtained valid stress intensity factors. The stress intensity coefficients of different short-bar fracture toughness test specimens were evaluated from analytical and experimental compliance studies. The.validity and applicability of this non-standard testing technique for determination of the fracture toughness of high-chromium cast irons were investigated. The results obtained correlated well with the valid results obtained from standard fracture toughness tests.