2 resultados para Chevrolet Luv Pickup Truck.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanics-based analysis framework predicts top-down fatigue cracking initiation time in asphalt concrete pavements by utilising fracture mechanics and mixture morphology-based property. To reduce the level of complexity involved, traffic data were characterised and incorporated into the framework using the equivalent single axle load (ESAL) approach. There is a concern that this kind of simplistic traffic characterisation might result in erroneous performance predictions and pavement structural designs. This paper integrates axle load spectra and other traffic characterisation parameters into the mechanics-based analysis framework and studies the impact these traffic characterisation parameters have on predicted fatigue cracking performance. The traffic characterisation inputs studied are traffic growth rate, axle load spectra, lateral wheel wander and volume adjustment factors. For this purpose, a traffic integration approach which incorporates Monte Carlo simulation and representative traffic characterisation inputs was developed. The significance of these traffic characterisation parameters was established by evaluating a number of field pavement sections. It is evident from the results that all the traffic characterisation parameters except truck wheel wander have been observed to have significant influence on predicted top-down fatigue cracking performance.