6 resultados para Chemical waste

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study attempted to identify the significant parameters which affect radionuclide migration from a low level radioactive waste disposal site located in a clay deposit. From initial sorption studies on smectite minerals, increased Kd with decreasing initial cation concentration was observed, and three sorption mechanisms were identified. The observation of anion dependent sorption was related to the existence of a mechanism in which an anion-cation pair are bound to the clay surface through the anion. The influence of competing cations, typical of inorganic groundwater constituents, depended on: (1) Ni/Co:Mn+(Mn+ = competing cation) ratio, (2) nature of M^n+, (3) total solution ionic strength. The presence of organic material in groundwater is well documented, but its effect on cation sorption has not been established. An initial qualitative investigation involving addition of simple organic ligands to Ni(Co)-hectorite samples demonstrated the formation of metal complexes in the clay interlayers, although some modified behaviour was observed. Further quantitative examination involving likely groundwater organic constituents and more comprehensive physical investigation confirmed this behaviour and enabled separation of the organic compounds used into two classes, according to their effect on cation sorption; (i) acids, (ii) amine compounds. X-ray photoelectron spectroscopy, scanning electron microscopy and Mossbauer spectroscopy were used to investigate the nature of transition metal ions sorbed onto montmorillonite and hectorite. Evidence strongly favoured the sorption of the hexaaquo cation, although a series of sorption sites of slightly different chemical characteristics were responsible for broadened peak widths observed in XPS and Mossbauer investigations. The surface sensitivity of XPS enabled recognition of the two surface sorption sites proposed in earlier sorption studies. Although thermal treatment of Fe^3+/Fe^2+-hectorite samples left iron atoms bonded to the silicate sheet structure, Mossbauer evidence indicated the presence of both ferric and ferrous iron in all samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blended Portland-blastfumace slag cements provide a suitable matrix for the encapsulation of low and intermediate level waste due to their inherantly low connective porosity and provide a highly alkaline and strongly reduced chemical environment. The hydration mechanism of these materials is complex and involves several competing chemical reactions. This thesis investigates three main areas: 1) The developing chemical shrinkage of the system shows that the underlying kinetics are dominantly linear and estimates of the activation energy of the slag made by this method and by conduction calorimetry show it to be c.53 kJ/mol. 2) Examination of the soUd phase reveals that caldum hydroxide is initially precipitated and subsequently consumed during hydration. The absolute rate of slag hydration is investigated by chemical and thermal methods and an estimation of the average silicate chain length (3 silicate units) by NMR is presented. 3) The developing pore solution chemistry shows that the system becomes rapidly alkaline (pH 13 - 13.5) and subsequently strongly reduced. Ion chromatography shows the presence of reduced sulphur species which are associated with the onset of reducing conditions. In the above studies, close control of the hydration temperature was maintained and the operation of a temperature controlled pore fluid extration press is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Haloclean process, a rotary kiln process for pyrolysis, developed by researchers at the Forschungszentrum Karlsruhe, Germany makes it possible to recover copper and precious metals from the scrap, ready for recycling. Pyrolysis neatly turns brominated electronic scrap plastics into recyclable copper and methanol feedstock while removing the halogens. The process has demonstrated its ability to recycle brominated electronic scrap in extensive parametric studies. A method suitable for the selective production of HBr in the presence of chlorine is the treatment of the pyrolysis oils with molten polypropylene. This treatment is offers the possibility to use the gas and liquid fraction from pyrolysis of electronic scrap as fossil fuel substitute in copper smelter processes or as feedstock for methanol production via gasification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability has become a watchword and guiding principle for modern society, and with it a growing appreciation that anthropogenic 'waste', in all its manifold forms, can offer a valuable source of energy, construction materials, chemicals and high value functional products. In the context of chemical transformations, waste materials not only provide alternative renewable feedstocks, but also a resource from which to create catalysts. Such waste-derived heterogeneous catalysts serve to improve the overall energy and atom-efficiency of existing and novel chemical processes. This review outlines key chemical transformations for which waste-derived heterogeneous catalysts have been developed, spanning biomass conversion to environmental remediation, and their benefits and disadvantages relative to conventional catalytic technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Considering the UK's limited capacity for waste disposal (particularly for hazardous/radiological waste) there is growing focus on waste avoidance and minimisation to lower the volumes of waste being sent to disposal. The hazardous nature of some waste can complicate its management and reduction. To address this problem there was a need for a decision making methodology to support managers in the nuclear industry as they identify ways to reduce the production of avoidable hazardous waste. The methodology we developed is called Waste And Sourcematter Analysis (WASAN). A methodology that begins the thought process at the pre-waste creation stage (i.e. Avoid). Design/methodology/ approach: The methodology analyses the source of waste, the production of waste inside the facility, the knock on effects from up/downstream facilities on waste production, and the down-selection of waste minimisation actions/options. WASAN has been applied to case studies with licencees and this paper reports on one such case study - the management of plastic bags in Enriched Uranium Residues Recovery Plant (EURRP) at Springfields (UK) where it was used to analyse the generation of radioactive plastic bag waste. Findings: Plastic bags are used in EURRP as a strategy to contain hazard. Double bagging of materials led to the proliferation of these bags as a waste. The paper reports on the philosophy behind WASAN, the application of the methodology to this problem, the results, and views from managers in EURRP. Originality/value: This paper presents WASAN as a novel methodology for analyzing the minimization of avoidable hazardous waste. This addresses an issue that is important to many industries e.g. where legislation enforces waste minimization, where waste disposal costs encourage waste avoidance, or where plant design can reduce waste. The paper forms part of the HSE Nuclear Installations Inspectorate's desire to work towards greater openness and transparency in its work and the development in its thinking.© Crown Copyright 2011.