15 resultados para Chemical structures
em Aston University Research Archive
Resumo:
The thermal oxidation of two model compounds representing the aromatic polyamide, MXD6 (poly m-xylylene adipamide) have been investigated. The model compounds (having different chemical structures, viz, one corresponding to the aromatic part of the chain and the other to the aliphatic part), based on the structure of MXD6 were prepared and reactions with different concentrations of cobalt ions examined with the aim of identifying the role of the different structural components of MXD6 on the mechanism of oxidation. The study showed that cobalt, in the presence of sodium phosphite (which acts as an antioxidant for MXD6 and the model compounds), increases the oxidation of the model compounds. It is believed that the cobalt acts predominantly as a catalyst for the decomposition of hydroperoxides, formed during oxidation of the models in the melt phase, to free radical products and to a lesser extent as a catalyst for the initiation of the oxidation reaction by complex formation with the amide, which is more likely to take place in the solid phase. An oxidation cycle has been proposed consisting of two parts both of which will occur, to some extent under all conditions of oxidation (in the melt and in the solid phase), but their individual predominance must be determined by the prevailing oxygen pressure at the reaction site. The different aspects of this proposed mechanism were examined from extensive model compound studies, and the evidence based on the nature of product formation and the kinetics of these reactions. Main techniques used to compare the rates of oxidation and the study of kinetics included, oxygen absorption, FT-IR, UV and TGA. HPLC was used for product separation and identification.
Resumo:
Substantial evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have potential as chemopreventative/therapeutic agents. However, these agents cannot be universally recommended for prevention purposes due to their potential side-effect profiles. Here, we compared the growth inhibitory and mechanistic activity of aspirin to two novel analogues, diaspirin (DiA) and fumaryl diaspirin (F-DiA). We found that the aspirin analogues inhibited cell proliferation and induced apoptosis of colorectal cancer cells at significantly lower doses than aspirin. Similar to aspirin, we found that an early response to the analogues was a reduction in levels of cyclin D1 and stimulation of the NF-κB pathway. This stimulation was associated with a significant reduction in basal levels of NF-κB transcriptional activity, in keeping with previous data for aspirin. However, in contrast to aspirin, DiA and F-DiA activity was not associated with nucleolar accumulation of RelA. For all assays, F-DiA had a more rapid and significant effect than DiA, identifying this agent as particularly active against colorectal cancer. Using a syngeneic colorectal tumour model in mice, we found that, while both agents significantly inhibited tumour growth in vivo, this effect was particularly pronounced for F-DiA. These data identify two compounds that are active against colorectal cancer in vitro and in vivo. They also identify a potential mechanism of action of these agents and shed light on the chemical structures that may be important for the antitumour effects of aspirin.
Resumo:
The underlying assumption in quantitative structure–activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here—the additive method—is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A* 0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data.
Resumo:
Diffusion NMR is a potentially routine tool in the analysis of mixtures, from industrial and synthetic outputs to natural products. However, the technique struggles to resolve species of similar size. Matrix-assisted DOSY offers a flexible approach to resolving such ambiguities on the basis of the chemical structures involved and on their interactions with a larger co-solute or matrix. The use of chromatographic supports, surfactants and polymers, in particular, is illustrated. The resolution of a wide range of different analyte mixtures, on the basis of differences in chemical structure and in stereochemistry, is demonstrated.
Resumo:
A rapid and efficient method to identify the weak points of the complex chemical structure of low band gap (LBG) polymers, designed for efficient solar cells, when submitted to light exposure is reported. This tool combines Electron Paramagnetic Resonance (EPR) using the 'spin trapping method' coupled with density functional theory modelling (DFT). First, the nature of the short life-time radicals formed during the early-stages of photo-degradation processes are determined by a spin-trapping technique. Two kinds of short life-time radical (R and R′O) are formed after 'short-duration' illumination in an inert atmosphere and in ambient air, respectively. Second, simulation allows the identification of the chemical structures of these radicals revealing the most probable photochemical process, namely homolytical scission between the Si atom of the conjugated skeleton and its pendent side-chains. Finally, DFT calculations confirm the homolytical cleavage observed by EPR, as well as the presence of a group that is highly susceptible to photooxidative attack. Therefore, the synergetic coupling of a spin trapping method with DFT calculations is shown to be a rapid and efficient method for providing unprecedented information on photochemical mechanisms. This approach will allow the design of LBG polymers without the need to trial the material within actual solar cell devices, an often long and costly screening procedure.
Advanced UV inscribed fibre grating structures and applications in optical sensing and laser systems
Resumo:
This thesis presents detailed investigation of UV inscribed fibre grating based devices and novel developments in the applications of such devices in optical sensing and fibre laser systems. The major contribution of this PhD programme includes the systematic study on fabrication, spectral characteristics and applications of different types of UV written in-fibre gratings such as Type I and IA Fibre Bragg Gratings (FBGs), Chirped Fibre Bragg Gratings (CFBGs) and Tilted Fibre Gratings (TFGs) with small, large and 45º tilted structures inscribed in normal silica fibre. Three fabrication techniques including holographic, phase-mask and blank beam exposure scanning, which were employed to fabricate a range of gratings in standard single mode fibre, are fully discussed. The thesis reports the creation of smart structures with self-sensing capability by embedding FBG-array sensors in Al matrix composite. In another part of this study, we have demonstrated the particular significant improvements made in sensitising standard FBGs to the chemical surrounding medium by inducing microstructure to the grating by femtosecond (fs) patterning assisted chemical etching technique. Also, a major work is presented for the investigation on the structures, inscription methods and spectral Polarisation Dependent Loss (PDL) and thermal characteristics of different angle TFGs. Finally, a very novel application in realising stable single polarisation and multiwavelength switchable Erbium Doped Fibre Lasers (EDFLs) using intracavity polarisation selective filters based on TFG devices with tilted structures at small, large and exact 45° angles forms another important contribution of this thesis.
Resumo:
Many important natural products contain the furan-2(5H)-one structure. The structure of this molecule lends itself to manipulation using combinatorial techniques due to the presence of more than one site for the attachment of different suhstituents. By developing different reaction schemes at the three sites available for attachment on the furan-2(5H)-one scaffold, combinatorial chemistry techniques can be employed to assemble libraries of novel furan 2(5H)-ones. These libraries can then be entered into various biological screening programmes. This approach will enable a vast diversity or compounds to be examined, in the hope or finding new biologically active Iead structures. The work in this thesis has investigated the potential that combinatorial chemistry has in the quest for new biologically active lead structures based on the furan-2(5H)-one structure. Different reactions were investigated with respect to their suitability for inclusion in a library. Once sets of reactions at the various sites had been established, the viability of these reactions in the assembly of combinatorial libraries was investigated. Purification methods were developed, and the purified products entered into suitable biological screening tests. Results from some of these tests were optimised using structure activity relationships, and the resulting products re-screened. The screening tests performed were for anticancer and antimicrobial activity, cholecystokinin (CCK-B) antagonism and anti-inflammatory activity (in the quest for novel cyclo-oxygenase (COX-2) selective non-steroidal anti-inflammatory drugs). It has been shown that many reactions undergone by the furan-2(5H)-one structure are suitable for the assembly of a combinatorial library. Investigation into the assembly of different libraries has been carried out with initial screening results included. From this work, further investigation into combinatorial library assembly and structure activity relationships of screened reaction products can be undertaken.
Resumo:
Modified oligonucleotides containing sulphur group have been useful tools for studies of carcinogenesis, protein or nucleic acid structures and functions, protein-nucleic acid interactions, and for antisense modulation of gene expression. One successful example has been the synthesis and study of oligodeoxynucleotides containing 6-thio-2'-deoxyguanine. 6-Thio-2-deoxyguanosine was first discovered as metabolic compound of 6- mercaptopurine (6-MP). Later, it was applied as drug to cure leukaemia. During the research of its toxicity, a method was developed to use the sulphur group as a versatile position for post-synthetic modification. The advantage of application of post-synthetic modification lies in its convenience. Synthesis of oligomers with normal sequences has become routine work in most laboratories. However, design and synthesis of a proper phosphoramidite monomer for a new modified nucleoside are always difficult tasks even for a skilful chemist. Thus an alternative method (post-synthetic method) has been invented to overcome the difficulties. This was achieved by incorporation of versatile nucleotides into oligomers which contain a leaving group, that is sufficiently stable to withstand the conditions of synthesis but can be substituted by nucleophiles after synthesis, to produce, a series of oligomers each containing a different modified base. In the current project, a phosphoramidite monomer with 6-thioguanine has been successfully synthesised and incorporated into RNA. A deprotection procedure, which is specific for RNA was designed for oligomers containing 6-thioguanosine. The results were validated by various methods (UV, HPLC, enzymatic digestion). Pioneer work in utilization of the versatile sulphur group for post-synthetic modification was also tested. Post-synthetic modification was also carried out on DNA with 6- deoxythioguanosine. Electrophilic reagents with various functional groups (alphatic, aromatic, fluorescent) and bi-functional groups have been attached with the oligomers.
Resumo:
This thesis is concerned with the investigation, by nuclear magnetic resonance spectroscopy, of the molecular interactions occurring in mixtures of benzene and cyclohexane to which either chloroform or deutero-chloroform has been added. The effect of the added polar molecule on the liquid structure has been studied using spin-lattice relaxation time, 1H chemical shift, and nuclear Overhauser effect measurements. The main purpose of the work has been to validate a model for molecular interaction involving local ordering of benzene around chloroform. A chemical method for removing dissolved oxygen from samples has been developed to encompass a number of types of sample, including quantitative mixtures, and its supremacy over conventional deoxygenation technique is shown. A set of spectrometer conditions, the use of which produces the minimal variation in peak height in the steady state, is presented. To separate the general diluting effects of deutero-chloroform from its effects due to the production of local order a series of mixtures involving carbon tetrachloride, instead of deutero-chloroform, have been used as non-interacting references. The effect of molecular interaction is shown to be explainable using a solvation model, whilst an approach involving 1:1 complex formation is shown not to account for the observations. It is calculated that each solvation shell, based on deutero-chloroform, contains about twelve molecules of benzene or cyclohexane. The equations produced to account for the T1 variations have been adapted to account for the 1H chemical shift variations in the same system. The shift measurements are shown to substantiate the solvent cage model with a cage capacity of twelve molecules around each chloroform molecule. Nuclear Overhauser effect data have been analysed quantitatively in a manner consistent with the solvation model. The results show that discrete shells only exist when the mole fraction of deutero-chloroform is below about 0.08.
Resumo:
A series of ethylene propylene terpolymer vulcanizates, prepared by varying termonomer type, cure system, cure time and cure temperature, are characterized by determining the number and type of cross-links present. The termonomers used represent the types currently available in commercial quantities. Characterization is carried out by measuring the C1 constant of the Mooney Rivlin Saunders equation before and after treatment with the chemical probes propane-2-thiol/piperidine and n-hexane thiol/piperidine, thus making it possible to calculate the relative proportions of mono-sulphidic, di-sulphidic and poly- sulphidic cross-links. The cure systems used included both sulphur and peroxide formulations. Specific physical properties are determined for each network and an attempt is made to correlate observed changes in these with variations in network structure. A survey of the economics of each formulation based on a calculated efficiency parameter for each cure system is included. Values of C1 are calculated from compression modulus data after the reliability of the technique when used with ethylene propylene terpolymers had been established. This is carried out by comparing values from both compression and extension stress strain measurements for natural rubber vulcanizates and by assessing the effects of sample dimensions and the degree of swelling. The technique of compression modulus is much more widely applicable than previously thought. The basic structure of an ethylene propylene terpolymer network appears to be independent of the type of cure system used ( sulphur based systems only), the proportions of constituent cross-links being nearly constant.
Resumo:
High-sensitivity optical chemsensors have been implemented by exploiting fibre Bragg grating structures UV-inscribed in D-shape, single-mode and multimode fibres and post-sensitized by hydrofluoric acid (HF) etching treatment. We have demonstrated that the Bragg grating structures which are intrinsically insensitive to chemicals can be sensitized by effective etching. All etched devices possess refractive index sensing capability that offers an encoding function to chemical concentrations. Most etched devices have been used to measure the concentrations of sugar solutions, showing a potential capability of detecting concentration changes as small as 0.1–0.5%.
Resumo:
Knowledge of the molecular structures of solid dispersions is vital, yet, despite thousands of reports in this area, it remains unclear. The aim of this research is to investigate the molecular structure of solid dispersions with hot melt preparation method by the simulated annealing method. Simulation results showed linear polymer chains form the random coils under heat and the drug molecules stick on the surface of polymer coils, while drug molecules are dispersed molecularly but irregularly within the amorphous low molecular weight carriers. This research presents more reasonable molecular images of solid dispersions than the existed theory.
Resumo:
High-sensitivity optical chemsensors have been implemented by exploiting fibre Bragg grating structures UV-inscribed in D-shape, single-mode and multimode fibres and post-sensitized by hydrofluoric acid (HF) etching treatment. We have demonstrated that the Bragg grating structures which are intrinsically insensitive to chemicals can be sensitized by effective etching. All etched devices possess refractive index sensing capability that offers an encoding function to chemical concentrations. Most etched devices have been used to measure the concentrations of sugar solutions, showing a potential capability of detecting concentration changes as small as 0.1–0.5%.
Resumo:
We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.