21 resultados para Chemical processes
em Aston University Research Archive
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
This thesis describes the design and implementation of an interactive dynamic simulator called DASPRII. The starting point of this research has been an existing dynamic simulation package, DASP. DASPII is written in standard FORTRAN 77 and is implemented on universally available IBM-PC or compatible machines. It provides a means for the analysis and design of chemical processes. Industrial interest in dynamic simulation has increased due to the recent increase in concern over plant operability, resiliency and safety. DASPII is an equation oriented simulation package which allows solution of dynamic and steady state equations. The steady state can be used to initialise the dynamic simulation. A robust non linear algebraic equation solver has been implemented for steady state solution. This has increased the general robustness of DASPII, compared to DASP. A graphical front end is used to generate the process flowsheet topology from a user constructed diagram of the process. A conversational interface is used to interrogate the user with the aid of a database, to complete the topological information. An original modelling strategy implemented in DASPII provides a simple mechanism for parameter switching which creates a more flexible simulation environment. The problem description generated is by a further conversational procedure using a data-base. The model format used allows the same model equations to be used for dynamic and steady state solution. All the useful features of DASPI are retained in DASPII. The program has been demonstrated and verified using a number of example problems, Significant improvements using the new NLAE solver have been shown. Topics requiring further research are described. The benefits of variable switching in models has been demonstrated with a literature problem.
Resumo:
Gas absorption, the removal of one or more constitutents from a gas mixture, is widely used in chemical processes. In many gas absorption processes, the gas mixture is already at high pressure and in recent years organic solvents have been developed for the process of physical absorption at high pressure followed by low pressure regeneration of the solvent and recovery of the absorbed gases. Until now the discovery of new solvents has usually been by expensive and time consuming trial and error laboratory tests. This work describes a new approach, whereby a solvent is selected from considerations of its molecular structure by applying recently published methods of predicting gas solubility from the molecular groups which make up the solvent molecule. The removal of the acid gases of carbon dioxide and hydrogen sulfide from methane or hydrogen was used as a commercially important example. After a preliminary assessment to identify promising moecular groups, more than eighty new solvent molecules were designed and evaluated by predicting gas solubility. The other important physical properties were also predicted by appropriate theoretical procedures, and a commercially promising new solvent was chosen to have a high solubility for acid gases, a low solubility for methane and hydrogen, a low vapour pressure, and a low viscosity. The solvent chosen, of molecular structure Ch3-COCH2-CH2-CO-CH3, was tested in the laboratory and shown to have physical properties, except for vapour pressures, close to those predicted. That is gas solubilities were within 10% but lower than predicted. Viscosity within 10% but higher than predicted and a vapour pressure significantly lower than predicted. A computer program was written to predict gas solubility in the new solvent at the high pressures (25 bar) used in practice. This is based on the group contribution method of Skold Jorgensen (1984). Before using this with the new solvent, Acetonyl acetone, the method was show to be sufficiently accurate by comparing predicted values of gas solubility with experimental solubilities from the literature for 14 systems up to 50 bar. A test of the commercial potential of the new solvent was made by means of two design studies which compared the size of plant and approximate relative costs of absorbing acid gases by means of the new solvent with other commonly used solvents. These were refrigerated methanol(Rectisol process) and Dimethyl Ether or Polyethylene Glycol(Selexol process). Both studies showed in terms of capital and operating cost some significant advantage for plant designed for the new solvent process.
Resumo:
The Sherwood Sandstone Group forms an important aquifer in Eastern England, which in North Nottinghamshire comprises the Nottingham Castle and Lenton Sandstone Formations. The aquifer is formed by an alluvial red-bed sequence dominated by medium-coarse grained sandstones which are texturally immature to submature and have only been subjected to shallow burial diagenesis. These sandstones reached the mature stage of the meso diagenetic regime, and four stages are recognized in their diagenetic history depending upon the physical/chemical processes prevailing and the subsequent effect on porosity and permeability. Stage "One" represents changes including dissolution of unstable silicates, clay replacement, red colouration and precipitation of authigenic minerals (quartz, feldspar, illite, l/S, kaolinite, dolomite, ferroan calcite, calcite). The net result of these changes was porosity reduction. Stage "Two" included changes due to mechanical compaction which resulted in minor porosity reduction. Stage "Three" was the main phase of secondary porosity enhancement. Stage "Four" represents changes taking place in the present groundwater where porosity and permeability may have been increased by dissolution and partly reduced by kaolinite precipitation. Porosity measured by water-resaturation and Hg-injection gave average values of 25.63% and 24.85% respectively. The results are comparable and showed marked correlation especially in highly porous/permeable rocks. Porosity measurements from photomicrographs were markedly offset from laboratory results. Horizontal Kw ranged between 1.43 x 10-5 and 1.13 x 10-1 mm/sec, with an average of 1.68 x 10-2 mm/sec. The estimated KHg ranged between 7.29 x 10-6 and 6.99 x 10-2 mm/sec with an average of 1.47 x 10-2 mm/sec. Both results are significantly correlated for highly porous/permeable rocks. The hydraulic properties are highly dependent upon the diagenetic properties (as most of the pores present are of secondary origin) as well as the pore size distribution. The chemistry of these groundwaters indicates that they are under-saturated with respect to dolomite, calcite, K-feldspar, l/S clay, and montmorillonite. The precipitation of kaolinite,and to a lesser extent illite, is favoured in the present groundwater regime.
Resumo:
Reactive, but not a reactant. Heterogeneous catalysts play an unseen role in many of today's processes and products. With the increasing emphasis on sustainability in both products and processes, this handbook is the first to combine the hot topics of heterogeneous catalysis and clean technology. It focuses on the development of heterogeneous catalysts for use in clean chemical synthesis, dealing with how modern spectroscopic techniques can aid the design of catalysts for use in liquid phase reactions, their application in industrially important chemistries - including selective oxidation, hydrogenation, solid acid- and base-catalyzed processes - as well as the role of process intensification and use of renewable resources in improving the sustainability of chemical processes. With its emphasis on applications, this book is of high interest to those working in the industry.
Resumo:
The rational design of new heterogeneous catalysts for clean chemical technologies can be accelerated by molecular level insight into surface chemical processes. In-situ methodologies, able to provide time-resolved and/or pressure dependent information on the evolution of reacting adsorbed layers over catalytically relevant surfaces, are therefore of especial interest. Here we discuss the application of in-situ XPS and in-situ, synchronous DRIFTS/MS/XAS methodologies to elucidate the active site in Pd-catalyzed, selective aerobic oxidation of allylic alcohols.
Resumo:
The rational design of new heterogeneous catalysts for clean chemical technologies can be accelerated by molecular level insight into surface chemical processes. In situ methodologies, able to provide time-resolved and/or pressure dependent information on the evolution of reacting adsorbed layers over catalytically relevant surfaces, are therefore of especial interest. Here we discuss recent applications of surface X-ray techniques to surface-catalysed oxidations, (de)hydrogenations, C-C coupling, dehalogenation and associated catalyst restructuring, and explore how these may help to shape future sustainable chemistry. © 2010 The Royal Society of Chemistry.
Resumo:
Developing cleaner chemical processes often involves sophisticated flow-chemistry equipment that is not available in many economically developing countries. For reactions where it is the data that are important rather than the physical product, the networking of chemists across the internet to allow remote experimentation offers a viable solution to this problem.
Resumo:
Sustainability has become a watchword and guiding principle for modern society, and with it a growing appreciation that anthropogenic 'waste', in all its manifold forms, can offer a valuable source of energy, construction materials, chemicals and high value functional products. In the context of chemical transformations, waste materials not only provide alternative renewable feedstocks, but also a resource from which to create catalysts. Such waste-derived heterogeneous catalysts serve to improve the overall energy and atom-efficiency of existing and novel chemical processes. This review outlines key chemical transformations for which waste-derived heterogeneous catalysts have been developed, spanning biomass conversion to environmental remediation, and their benefits and disadvantages relative to conventional catalytic technologies.
Resumo:
This paper reviews nitrogen (N) cycle of effluent-irrigated energy crop plantations, starting from wastewater treatment to thermo-chemical conversion processes. In wastewater, N compounds contribute to eutrophication and toxicity in water cycle. Removal of N via vegetative filters and specifically in short-rotation energy plantations, is a relatively new approach to managing nitrogenous effluents. Though combustion of energy crops is in principle carbon neutral, in practice, N content may contribute to NOx emissions with significant global warming potential. Intermediate pyrolysis produces advanced fuels while reducing such emissions. By operating at intermediate temperature (500°C), it retains most N in char as pyrrolic-N, pyridinic-N, quaternary-N and amines. In addition, biochar provides long-term sequestration of carbon in soils.
Resumo:
The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.
Resumo:
A systematic survey of the possible methods of chemical extraction of iron by chloride formation has been presented and supported by a comparable study of :feedstocks, products and markets. The generation and evaluation of alternative processes was carried out by the technique of morphological analysis vihich was exploited by way of a computer program. The final choice was related to technical feasibility and economic viability, particularly capital cost requirements and developments were made in an estimating procedure for hydrometallurgjcal processes which have general applications. The systematic exploration included the compilation of relevant data, and this indicated a need.to investigate precipitative hydrolysis or aqueous ferric chloride. Arising from this study, two novel hydrometallurgical processes for manufacturing iron powder are proposed and experimental work was undertaken in the following .areas to demonstrate feasibility and obtain basic data for design purposes: (1) Precipitative hydrolysis of aqueous ferric chloride. (2) Gaseous chloridation of metallic iron, and oxidation of resultant ferrous chloride. (3) Reduction of gaseous ferric chloride with hydrogen. (4) Aqueous acid leaching of low grade iron ore. (5) Aqueous acid leaching of metallic iron. The experimentation was supported by theoretical analyses dealing with: (1) Thermodynamics of hydrolysis. (2) Kinetics of ore leaching. (3) Kinetics of metallic iron leaching. (4) Crystallisation of ferrous chloride. (5) Oxidation of anhydrous ferrous chloride. (6) Reduction of ferric chloride. Conceptual designs are suggested fbr both the processes mentioned. These draw attention to areas where further work is necessary, which are listed. Economic analyses have been performed which isolate significant cost areas, und indicate total production costs. Comparisons are mode with previous and analogous proposals for the production of iron powder.
Resumo:
The aim of this work was to synthesise a series of hydrophilic derivatives of cis-1,2-dihydroxy-3,5-cyclohexadiene (cis-DHCD) and copolymerise them with 2-hydroxyethyl methacrylate (HEMA), to produce a completely new range of hydrogel materials. It is theorised that hydrogels incorporating such derivatives of cis-DHCD will exhibit good strength and elasticity in addition to good water binding ability. The synthesis of derivatives was attempted by both enzymatic and chemical methods. Enzyme synthesis involved the transesterification of cis-DHCD with a number of trichloro and trifluoroethyl esters using the enzyme lipase porcine pancreas to catalyse the reaction in organic solvent. Cyclohexanol was used in initial studies to assess the viability of enzyme catalysed reactions. Chemical synthesis involved the epoxidation of a number of unsaturated carboxylic acids and the subsequent reaction of these epoxy acids with cis-DHCD in DCC/DMAP catalysed esterifications. The silylation of cis-DHCD using TBDCS and BSA was also studied. The rate of aromatisation of cis-DHCD at room temperature was studied in order to assess its stability and 1H NMR studies were also undertaken to determine the conformations adopted by derivatives of cis-DHCD. The copolymerisation of diepoxybutanoate, diepoxyundecanoate, dibutenoate and silyl protected derivatives of cis-DHCD with HEMA, to produce a new group of hydrogels was investigated. The EWC and mechanical properties of these hydrogels were measured and DSC was used to determine the amount of freezing and non-freezing water in the membranes. The effect on EWC of opening the epoxide rings of the comonomers was also investigated
Resumo:
The primary objective of this research was to examine the concepts of the chemical modification of polymer blends by reactive processing using interlinking agents (multi-functional, activated vinyl compounds; trimethylolpropane triacrylates {TRIS} and divinylbenzene {DVD}) to target in-situ interpolymer formation between immiscible polymers in PS/EPDM blends via peroxide-initiated free radical reactions during melt mixing. From a comprehensive survey of previous studies of compatibility enhancement in polystyrene blends, it was recognised that reactive processing offers opportunities for technological success that have not yet been fully realised; learning from this study is expected to assist in the development and application of this potential. In an experimental-scale operation for the simultaneous melt blending and reactive processing of both polymers, involving manual injection of precise reactive agent/free radical initiator mixtures directly into molten polymer within an internal mixer, torque changes were distinct, quantifiable and rationalised by ongoing physical and chemical effects. EPDM content of PS/EPDM blends was the prime determinant of torque increases on addition of TRIS, itself liable to self-polymerisation at high additions, with little indication of PS reaction in initial reactively processed blends with TRIS, though blend compatibility, from visual assessment of morphology by SEM, was nevertheless improved. Suitable operating windows were defined for the optimisation of reactive blending, for use once routes to encourage PS reaction could be identified. The effectiveness of PS modification by reactive processing with interlinking agents was increased by the selection of process conditions to target specific reaction routes, assessed by spectroscopy (FT-IR and NMR) and thermal analysis (DSC) coupled dichloromethane extraction and fractionation of PS. Initiator concentration was crucial in balancing desired PS modification and interlinking agent self-polymerisation, most particularly with TRIS. Pre-addition of initiator to PS was beneficial in the enhancement of TRIS binding to PS and minimisation of modifier polymerisation; believed to arise from direct formation of polystyryl radicals for addition to active unsaturation in TRIS. DVB was found to be a "compatible" modifier for PS, but its efficacy was not quantified. Application of routes for PS reaction in PS/EPDM blends was successful for in-situ formation of interpolymer (shown by sequential solvent extraction combined with FT-IR and DSC analysis); the predominant outcome depending on the degree of reaction of each component, with optimum "between-phase" interpolymer formed under conditions selected for equalisation of differing component reactivities and avoidance of competitive processes. This was achieved for combined addition of TRIS+DVB at optimum initiator concentrations with initiator pre-addition to PS. Improvements in blend compatibility (by tensiles, SEM and thermal analysis) were shown in all cases with significant interpolymer formation, though physical benefits were not; morphology and other reactive effects were also important factors. Interpolymer from specific "between-phase" reaction of blend components and interlinking agent was vital for the realisation of positive performance on compatibilisation by the chemical modification of polymer blends by reactive processing.
Resumo:
Tear component deposition onto contact lenses is termed `spoilation' and occurs due to the interaction of synthetic polymers with their biological fluid environment. Spoilation phenomena alter the physico-chemical properties of hydrophilic contact lenses, diminishing the optical properties of the lens; causing discomfort and complications for the wearer. Eventually these alterations render the lens unwearable. The primary aim of this interdisciplinary study was to develop analytical techniques capable of analysing the minute quantities of biological deposition involved, in particular the lipid fraction. Prior to this work such techniques were unavailable for single contact lenses. It is envisaged that these investigations will further the understanding of this biological interfacial conversion. Two main analytical techniques were developed: a high performance liquid chromatography (HPLC) technique and fluorescence spectrofluorimetry. The HPLC method allows analysis of a single contact lens and provided previously unavailable valuable information about variations in the lipid profiles of deposited contact lenses and patient tear films. Fluorescence spectrophotofluorimetry is a sensitive non-destructive technique for observing changes in the fluorescence intensity of biological components on contact lenses. The progression and deposition of tear materials can be monitored and assessed for both in vivo and in vitro spoiled lenses using this technique. An improved in vitro model which is comparable to tears and chemically mimics ocular spoilation was also developed. This model allows the controlled study of extrinsic factors and hydrogel compositions. These studies show that unsaturated tear lipids, probably unsaturated fatty acids, are involved in the interfacial conversion of hydrogel lenses, rendering them incompatible with the ocular microenvironment. Lipid interaction with the lens surface then facilitates secondary deposition of other tear components. Interaction, exchange and immobilisation (by polymerisation) of the lipid layer appears to occur before the final and rapid growth of more complex, insoluble discrete deposits, sometimes called `white spots'.