2 resultados para Chemical Signalling
em Aston University Research Archive
Resumo:
In the Ventrobasal (VB) thalamus, astrocytes are known to elicit NMDA-receptor mediated slow inward currents (SICs) spontaneously in neurons. Fluorescence imaging of astrocytes and patch clamp recordings from the thalamocortical (TC) neurons in the VB of 6-23 day old Wistar rats were performed. TC neurons exhibit spontaneous SICs at low frequencies (~0.0015Hz) that were inhibited by NMDA-receptor antagonists D-AP5 (50µM), and were insensitive to TTX (1µM) suggesting a non-neuronal origin. The effect of corticothalamic (CT) and sensory (Sen) afferent stimulation on astrocyte signalling was assessed by varying stimulus parameters. Moderate synaptic stimulation elicited astrocytic Ca2+ increases, but did not affect the incidence of spontaneous SICs. Prolonged synaptic stimulation induced a 265% increase in SIC frequency. This increase lasted over one hour after the cessation of synaptic stimulation, so revealing a Long Term Enhancement (LTE) of astrocyte-neuron signalling. LTE induction required group I mGluR activation. LTE SICs targeted NMDA-receptors located at extrasynaptic sites. LTE showed a developmental profile: from weeks 1-3, the SIC frequency was increased by an average 50%, 240% and 750% respectively. Prolonged exposure to glutamate (200µM) increased spontaneous SIC frequency by 1800%. This “chemical” form of LTE was prevented by the broad-spectrum excitatory amino acid transporter (EAAT) inhibitor TBOA (300µM) suggesting that glutamate uptake was a critical factor. My results therefore show complex glutamatergic signalling interactions between astrocytes and neurons. Furthermore, two previously unrecognised mechanisms of enhancing SIC frequency are described. The synaptically induced LTE represents a form of non-synaptic plasticity and a glial “memory” of previous synaptic activity whilst enhancement after prolonged glutamate exposure may represent a pathological glial signalling mechanism.
Resumo:
Substantial evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have potential as chemopreventative/therapeutic agents. However, these agents cannot be universally recommended for prevention purposes due to their potential side-effect profiles. Here, we compared the growth inhibitory and mechanistic activity of aspirin to two novel analogues, diaspirin (DiA) and fumaryl diaspirin (F-DiA). We found that the aspirin analogues inhibited cell proliferation and induced apoptosis of colorectal cancer cells at significantly lower doses than aspirin. Similar to aspirin, we found that an early response to the analogues was a reduction in levels of cyclin D1 and stimulation of the NF-κB pathway. This stimulation was associated with a significant reduction in basal levels of NF-κB transcriptional activity, in keeping with previous data for aspirin. However, in contrast to aspirin, DiA and F-DiA activity was not associated with nucleolar accumulation of RelA. For all assays, F-DiA had a more rapid and significant effect than DiA, identifying this agent as particularly active against colorectal cancer. Using a syngeneic colorectal tumour model in mice, we found that, while both agents significantly inhibited tumour growth in vivo, this effect was particularly pronounced for F-DiA. These data identify two compounds that are active against colorectal cancer in vitro and in vivo. They also identify a potential mechanism of action of these agents and shed light on the chemical structures that may be important for the antitumour effects of aspirin.