2 resultados para Cerebral Palsy

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An estimated 30% of individuals with autism spectrum disorders (ASD) remain minimally verbal into late childhood, but research on cognition and brain function in ASD focuses almost exclusively on those with good or only moderately impaired language. Here we present a case study investigating auditory processing of GM, a nonverbal child with ASD and cerebral palsy. At the age of 8 years, GM was tested using magnetoencephalography (MEG) whilst passively listening to speech sounds and complex tones. Where typically developing children and verbal autistic children all demonstrated similar brain responses to speech and nonspeech sounds, GM produced much stronger responses to nonspeech than speech, particularly in the 65–165 ms (M50/M100) time window post-stimulus onset. GM was retested aged 10 years using electroencephalography (EEG) whilst passively listening to pure tone stimuli. Consistent with her MEG response to complex tones, GM showed an unusually early and strong response to pure tones in her EEG responses. The consistency of the MEG and EEG data in this single case study demonstrate both the potential and the feasibility of these methods in the study of minimally verbal children with ASD. Further research is required to determine whether GM's atypical auditory responses are characteristic of other minimally verbal children with ASD or of other individuals with cerebral palsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine the laminar distribution of the pathological changes in the cerebral cortex in progressive supranuclear palsy (PSP). METHOD: The distribution of the abnormally enlarged neurons (EN), surviving neurons, neurofibrillary tangles (NFT), glial inclusions (GI), tufted astrocytes (TA), and neuritic plaques (NP) were studied across the cortex in tau immunolabeled sections of frontal and temporal cortex in 8 cases of PSP. RESULTS: The distribution of the NFT was highly variable with no consistent pattern of laminar distribution. The GI were distributed either in the lower laminae or uniformly across the cortex. Surviving neurons exhibited either a density peak in the upper laminae or a bimodal distribution was present with density peaks in the upper and lower laminae. The EN and glial cell nuclei were distributed primarily in the lower cortical laminae. There were positive correlations between the densities of the EN and glial cell nuclei and negative correlations between the surviving neurons and glial cells. No correlations were present between the densities of the NFT and GI. CONCLUSION: Cortical pathology in PSP predominantly affects the lower laminae but may spread to affect the upper laminae in some cases. The NFT and GI may have different laminar distributions and gliosis occurs concurrently with neuronal enlargement.