8 resultados para Central neuropathic pain
em Aston University Research Archive
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
Background and objective: Spinal cord stimulation (SCS) is believed to exert supraspinal effects; however, these mechanisms are still far from fully elucidated. This systematic review aims to assess existing neurophysiological and functional neuroimaging literature to reveal current knowledge regarding the effects of SCS for chronic neuropathic pain on brain activity, to identify gaps in knowledge, and to suggest directions for future research. Databases and data treatment: Electronic databases and hand-search of reference lists were employed to identify publications investigating brain activity associated with SCS in patients with chronic neuropathic pain, using neurophysiological and functional neuroimaging techniques (fMRI, PET, MEG, EEG). Studies investigating patients with SCS for chronic neuropathic pain and studying brain activity related to SCS were included. Demographic data (age, gender), study factors (imaging modality, patient diagnoses, pain area, duration of SCS at recording, stimulus used) and brain areas activated were extracted from the included studies. Results: Twenty-four studies were included. Thirteen studies used neuroelectrical imaging techniques, eight studies used haemodynamic imaging techniques, two studies employed both neuroelectrical and haemodynamic techniques separately, and one study investigated cerebral neurobiology. Conclusions: The limited available evidence regarding supraspinal mechanisms of SCS does not allow us to develop any conclusive theories. However, the studies included appear to show an inhibitory effect of SCS on somatosensory evoked potentials, as well as identifying the thalamus and anterior cingulate cortex as potential mediators of the pain experience. The lack of substantial evidence in this area highlights the need for large-scale controlled studies of this kind.
Resumo:
Although visceral hypersensitivity is thought to be important in generating symptoms in functional gastrointestinal disorders, the neural mechanisms involved are poorly understood. We recently showed that central sensitization (hyperexcitability of spinal cord sensory neurones) may play an important role. In this study, we demonstrate that after a 30-min infusion of 0.15 M HCl acid into the healthy human distal esophagus, we see a reduction in the pain threshold to electrical stimulation of the non-acid-exposed proximal esophagus (9.6 ± 2.4 mA) and a concurrent reduction in the latency of the N1 and P2 components of the esophageal evoked potentials (EEP) from this region (10.4 ± 2.3 and 15.8 ± 5.3 ms, respectively). This reduced EEP latency indicates a central increase in afferent pathway velocity and therefore suggests that hyperexcitability within the central visceral pain pathway contributes to the hypersensitivity within the proximal, non-acid-exposed esophagus (secondary hyperalgesia/allodynia). These findings provide the first electrophysiological evidence that central sensitization contributes to human visceral hypersensitivity.
Resumo:
Background - Few epidemiological studies have prospectively investigated preoperative and surgical risk factors for acute postoperative pain after surgery for breast cancer. We investigated demographic, psychological, pain-related and surgical risk factors in women undergoing resectional surgery for breast cancer. Methods - Primary outcomes were pain severity, at rest (PAR) and movement-evoked pain (MEP), in the first postoperative week. Results - In 338 women undergoing surgery, those with chronic preoperative pain were three times more likely to report moderate to severe MEP after breast cancer surgery (OR 3.18, 95% CI 1.45–6.99). Increased psychological ‘robustness’, a composite variable representing positive affect and dispositional optimism, was associated with lower intensity acute postoperative PAR (OR 0.63, 95% CI 0.48–0.82) and MEP (OR 0.71, 95% CI 0.54–0.93). Sentinel lymph node biopsy (SLNB) and intraoperative nerve division were associated with reduced postoperative pain. No relationship was found between preoperative neuropathic pain and acute pain outcomes; altered sensations and numbness postoperatively were more common after axillary sample or clearance compared with SLNB. Conclusion - Chronic preoperative pain, axillary surgery and psychological robustness significantly predicted acute pain outcomes after surgery for breast cancer. Preoperative identification and targeted intervention of subgroups at risk could enhance the recovery trajectory in cancer survivors.
Resumo:
OBJECTIVES: As visceral afferents from different regions of the gastrointestinal tract converge at the level of the spinal cord, we hypothesized that sensitization of one gut organ would induce visceral hypersensitivity in another gut organ, remote to the sensitizing stimulus. METHODS: Protocol 1: Eight healthy male volunteers, age 30 +/- 8.2 yr, underwent three studies on different days. Esophageal pain thresholds (PT) were recorded at 10-min intervals prior to and for 2 h following a 30-min duodenal infusion of either 0.15 M hydrochloric acid (HCl), saline, or no infusion. Five subjects repeated the study to demonstrate reproducibility. Protocol 2: Esophageal evoked potentials (EEP) were studied in six subjects on two occasions prior to and 1 h after a 30-min duodenal infusion of 0.15 M HCl or saline. RESULTS: Protocol 1: After acid infusion, there were reproducible reductions in esophageal PT (ICC = 0.88), which were maximal at 110 min (15.05 +/- 2.25 mA) (p < 0.002). Following saline infusion there was an increase in esophageal PT (ICC = 0.71), which was similar to the no-infusion condition (6.21 +/- 1.54 mA vs 8.5 + 7.6 mA; p > 0.05). Protocol 2: Esophageal sensation scores increased (p= 0.02) after acid, but not after saline infusion (p= 0.1). A comparison of the latencies of EEP components prior to and following acid and saline infusion revealed a reduction in the N1 (p= 0.02) and P2 components (p= 0.04). CONCLUSION: This study provides the first objective evidence that duodenal acidification can induce esophageal hypersensitivity associated with changes in sensitivity of the central visceral pain pathway. As the esophagus was remote from the sensitizing stimulus, central sensitization of spinal dorsal horn neurons is likely to have contributed to these changes.
Resumo:
Purpose - We performed a study of laser panretinal photocoagulation in 20 patients with proliferative retinopathy. We compared short exposure, high-energy laser settings with conventional settings, using a 532?nm, frequency doubled, Neodymium–Yag laser and assessed the patients in terms of pain experienced and effectiveness of treatment. Methods - Twenty patients having panretinal photocoagulation for the first time underwent random allocation to treatment of the superior and inferior hemi-retina. Treatment A used ‘conventional’ parameters: exposure time 0.1?s, power sufficient to produce a visible grey-white burns, spot size 300?µm. The other hemi- retina was treated with treatment B using exposure 0.02?s, 300?µm and sufficient power to have similar endpoint. All patients were asked to evaluate severity of pain on a visual analogue scale. (0=no pain, 10=most severe pain). All patients were masked as to the type of treatment and the order of carrying out the treatment on each patient was randomised. Patients underwent fundus photography and were followed up for 6–45 months. Results - Seventeen patients had proliferative diabetic retinopathy, two had ischaemic central retinal vein occlusion and one had ocular ischaemic syndrome. The mean response to treatment A was 5.11, compared to 1.40 treatment B, on the visual analogue scale, which was statistically significant (P=0.001). All patients preferred treatment B. Further treatments, if required, were performed with treatment B parameters and long-term follow-up has shown no evidence of undertreatment. Conclusions - Shortening exposure time of retinal laser is significantly less painful but equally effective as conventional parameters.
Resumo:
Cortical pain processing is associated with large-scale changes in neuronal connectivity, resulting from neural plasticity phenomena of which brain-derived neurotrophic factor (BDNF) is a central driver. The common single nucleotide polymorphism Val66Met is associated with reduced BDNF activity. Using the trigeminal pain-related evoked potential (tPREP) to repeated electrical painful stimuli, we investigated whether the methionine substitution at codon 66 of the BDNF gene was associated with changes in cortical processing of noxious stimuli. Fifty healthy volunteers were genotyped: 30 were Val/Val and 20 were Met-carriers. tPREPs to 30 stimuli of the right supraorbital nerve using a concentric electrode were recorded. The N2 and P2 component latencies and the N2-P2 amplitude were measured over the 30 stimuli and separately, by dividing the measurements in 3 consecutive blocks of 10 stimuli. The average response to the 30 stimuli did not differ in latency or amplitude between the 2 genotypes. There was a decrease in the N2-P2 amplitude between first and third block in the Val/Val group but not in Met-carriers. BDNF Val66Met is associated with reduced decremental response to repeated electrical stimuli, possibly as a result of ineffective mechanisms of synaptic memory and brain plasticity associated with the polymorphism. PERSPECTIVE: BDNF Val66Met polymorphism affects the tPREP N2-P2 amplitude decrement and influences cortical pain processing through neurotrophin-induced neural plasticity, or through a direct BDNF neurotransmitter-like effect. Our findings suggest that upcoming BDNF central agonists might in the future play a role in pain management.
Resumo:
Purpose: Current panretinal laser photocoagulative parameters are based on the Diabetic Retinopathy Study, which used exposures of 0.1 - 0.5 second to achieve moderate intensity retinal burns. Unfortunately, many patients find these settings painful. We wanted to investigate whether reducing exposure time and increasing power to give the same endpoint, is more comfortable and effective. Methods: 20 patients having panretinal photocoagulation for the first time underwent random allocation to two forms of laser treatment: half of the retinal area scheduled for treatment was treated with Green Yag laser with conventional parameters {exposure time 0.1 second (treatment A), power density sufficient to produce a visible grey - white burns}. The other half treated with shorter exposure 0.02 second (treatment B). All patient were asked to evaluate severity of pain on a visual analogue scale ranging from 0 - 10 (0 = no pain, 10 = most severe pain). All patients were masked as to the type of treatment. The order of carrying out the treatment on each patient was randomised. Fundus photographs were taken of each hemifundus to confirm treatment. Results: Of the 20 patients, 17 had proliferative diabetic retinopathy, 2 had ischaemic central retinal vein occlusion and one had ocular ischaemic syndrome. The average pain response to treatment A was 5.11 on a visual analogue scale with a mean power of 0.178 Watt; the average pain response to treatment B was 1.40 with a mean power of 0.489 Watt. Short exposure laser burns were significantly less painful (P < 0.001). Conclusion: Shortening exposure time with increased power is more comfortable for patients undergoing panretinal photocoagulation than conventional parameters.