9 resultados para Central coherence

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

EV is a child with a talent for learning language combined with Asperger syndrome. EV’s talent is evident in the unusual circumstances of her acquisition of both her first (Bulgarian) and second (German) languages and the unique patterns of both receptive and expressive language (in both the L1 and L2), in which she shows subtle dissociations in competence and performance consistent with an uneven cognitive profile of skills and abilities. We argue that this case provides support for theories of language learning and usage that require more general underlying cognitive mechanisms and skills. One such account, the Weak Central Coherence (WCC) hypothesis of autism, provides a plausible framework for the interpretation of the simultaneous co-occurrence of EV’s particular pattern of cognitive strengths and weaknesses. Furthermore, we show that specific features of the uneven cognitive profile of Asperger syndrome can help explain the observed language talent displayed by EV. Thus, rather than demonstrating a case where language learning takes place despite the presence of deficits, EV’s case illustrates how a pattern of strengths within this profile can specifically promote language learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2002, we published a paper [Brock, J., Brown, C., Boucher, J., Rippon, G., 2002. The temporal binding deficit hypothesis of autism. Development and Psychopathology 142, 209-224] highlighting the parallels between the psychological model of 'central coherence' in information processing [Frith, U., 1989. Autism: Explaining the Enigma. Blackwell, Oxford] and the neuroscience model of neural integration or 'temporal binding'. We proposed that autism is associated with abnormalities of information integration that is caused by a reduction in the connectivity between specialised local neural networks in the brain and possible overconnectivity within the isolated individual neural assemblies. The current paper updates this model, providing a summary of theoretical and empirical advances in research implicating disordered connectivity in autism. This is in the context of changes in the approach to the core psychological deficits in autism, of greater emphasis on 'interactive specialisation' and the resultant stress on early and/or low-level deficits and their cascading effects on the developing brain [Johnson, M.H., Halit, H., Grice, S.J., Karmiloff-Smith, A., 2002. Neuroimaging of typical and atypical development: a perspective from multiple levels of analysis. Development and Psychopathology 14, 521-536].We also highlight recent developments in the measurement and modelling of connectivity, particularly in the emerging ability to track the temporal dynamics of the brain using electroencephalography (EEG) and magnetoencephalography (MEG) and to investigate the signal characteristics of this activity. This advance could be particularly pertinent in testing an emerging model of effective connectivity based on the balance between excitatory and inhibitory cortical activity [Rubenstein, J.L., Merzenich M.M., 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior 2, 255-267; Brown, C., Gruber, T., Rippon, G., Brock, J., Boucher, J., 2005. Gamma abnormalities during perception of illusory figures in autism. Cortex 41, 364-376]. Finally, we note that the consequence of this convergence of research developments not only enables a greater understanding of autism but also has implications for prevention and remediation. © 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Frith has argued that people with autism show “weak central coherence,” an unusual bias toward piecemeal rather than configurational processing and a reduction in the normal tendency to process information in context. However, the precise cognitive and neurological mechanisms underlying weak central coherence are still unknown. We propose the hypothesis that the features of autism associated with weak central coherence result from a reduction in the integration of specialized local neural networks in the brain caused by a deficit in temporal binding. The visuoperceptual anomalies associated with weak central coherence may be attributed to a reduction in synchronization of high-frequency gamma activity between local networks processing local features. The failure to utilize context in language processing in autism can be explained in similar terms. Temporal binding deficits could also contribute to executive dysfunction in autism and to some of the deficits in socialization and communication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We conducted a detailed study of a case of linguistic talent in the context of autism spectrum disorder, specifically Asperger syndrome. I.A. displays language strengths at the level of morphology and syntax. Yet, despite this grammar advantage, processing of figurative language and inferencing based on context presents a problem for him. The morphology advantage for I.A. is consistent with the weak central coherence (WCC) account of autism. From this account, the presence of a local processing bias is evident in the ways in which autistic individuals solve common problems, such as assessing similarities between objects and finding common patterns, and may therefore provide an advantage in some cognitive tasks compared to typical individuals. We extend the WCC account to language and provide evidence for a connection between the local processing bias and the acquisition of morphology and grammar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensory processing is a crucial underpinning of the development of social cognition, a function which is compromised in variable degree in patients with pervasive developmental disorders (PDD). In this manuscript, we review some of the most recent and relevant contributions, which have looked at auditory sensory processing derangement in PDD. The variability in the clinical characteristics of the samples studied so far, in terms of severity of the associated cognitive deficits and associated limited compliance, underlying aetiology and demographic features makes a univocal interpretation arduous. We hypothesise that, in patients with severe mental deficits, the presence of impaired auditory sensory memory as expressed by the mismatch negativity could be a non-specific indicator of more diffuse cortical deficits rather than causally related to the clinical symptomatology. More consistent findings seem to emerge from studies on less severely impaired patients, in whom increased pitch perception has been interpreted as an indicator of increased local processing, probably as compensatory mechanism for the lack of global processing (central coherence). This latter hypothesis seems extremely attractive and future trials in larger cohorts of patients, possibly standardising the characteristics of the stimuli are a much-needed development. Finally, specificity of the role of the auditory derangement as opposed to other sensory channels needs to be assessed more systematically using multimodal stimuli in the same patient group. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autism is a developmental disorder that is currently defined in terms of a triad of impairments in social interaction, communication, and behavioural flexibility. Psychological models have focussed on deficits in high level social and cognitive processes, such as ‘weak central coherence’ and deficits in ‘theory of mind’. Converging evidence from different fields of neuroscience research indicates that the underlying neural dysfunction is associated with atypical patterns of cortical connectivity (Rippon et al., 2007). This arises very early in development and results in sensory, perceptual and cognitive deficits at a much earlier and more fundamental level than previously suggested, but with cascading effects on higher level psychological and social processes. Earlier research in this sphere has focussed mainly on patterns of underconnectivity in distributed cortical networks underpinning process such as language and executive function. (Just et al., 2007). Such research mainly utilises imaging techniques with high spatial resolution. This paper focuses on evidence associated with local over-connectivity, evident in more low level and transitory processes and hence more easily measurable with techniques with high temporal resolution, such as MEG and EEG. Results are described which provide evidence of such local over-connectivity, characterised by atypical results in the gamma frequency range (Brown et al., 2005) together with discussions about the future directions of such research and its implications for remediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assess the accuracy of the Visante anterior segment optical coherence tomographer (AS-OCT) and present improved formulas for measurement of surface curvature and axial separation. Measurements are made in physical model eyes. Accuracy is compared for measurements of corneal thickness (d1) and anterior chamber depth (d2) using-built-in AS-OCT software versus the improved scheme. The improved scheme enables measurements of lens thickness (d 3) and surface curvature, in the form of conic sections specified by vertex radii and conic constants. These parameters are converted to surface coordinates for error analysis. The built-in AS-OCT software typically overestimates (mean±standard deviation(SD)]d1 by +62±4 μm and d2 by +4±88μm. The improved scheme reduces d1 (-0.4±4 μm) and d2 (0±49 μm) errors while also reducing d3 errors from +218±90 (uncorrected) to +14±123 μm (corrected). Surface x coordinate errors gradually increase toward the periphery. Considering the central 6-mm zone of each surface, the x coordinate errors for anterior and posterior corneal surfaces reached +3±10 and 0±23 μm, respectively, with the improved scheme. Those of the anterior and posterior lens surfaces reached +2±22 and +11±71 μm, respectively. Our improved scheme reduced AS-OCT errors and could, therefore, enhance pre- and postoperative assessments of keratorefractive or cataract surgery, including measurement of accommodating intraocular lenses. © 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gestalt grouping rules imply a process or mechanism for grouping together local features of an object into a perceptual whole. Several psychophysical experiments have been interpreted as evidence for constrained interactions between nearby spatial filter elements and this has led to the hypothesis that element linking might be mediated by these interactions. A common tacit assumption is that these interactions result in response modulation which disturbs a local contrast code. We addressed this possibility by performing contrast discrimination experiments using two-dimensional arrays of multiple Gabor patches arranged either (i) vertically, (ii) in circles (coherent conditions), or (iii) randomly (incoherent condition), as well as for a single Gabor patch. In each condition, contrast increments were applied to either the entire test stimulus (experiment 1) or a single patch whose position was cued (experiment 2). In experiment 3, the texture stimuli were reduced to a single contour by displaying only the central vertical strip. Performance was better for the multiple-patch conditions than for the single-patch condition, but whether the multiple-patch stimulus was coherent or not had no systematic effect on the results in any of the experiments. We conclude that constrained local interactions do not interfere with a local contrast code for our suprathreshold stimuli, suggesting that, in general, this is not the way in which element linking is achieved. The possibility that interactions are involved in enhancing the detectability of contour elements at threshold remains unchallenged by our experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.