2 resultados para Cell Mitosis
em Aston University Research Archive
Resumo:
Secretory protein trafficking is arrested and the Golgi apparatus fragmented when mammalian cells enter mitosis. These changes are thought to facilitate cell cycle progression and Golgi inheritance, and are brought about through the actions of mitotically active protein kinases. To better understand how the Golgi apparatus undergoes mitotic fragmentation we have sought to identify novel Golgi targets for mitotic kinases. We report here the identification of the ARF exchange factor GBF1 as a Golgi phosphoprotein. GBF1 is phosphorylated by CDK1-cyclin B in mitosis, which results in its dissociation from Golgi membranes. Consistent with a reduced level of GBF1 activity at the Golgi membrane there is a reduction in levels of membrane-associated GTP-bound ARF in mitotic cells. Despite the reduced levels of membrane bound GBF1 and ARF, COPI binding to the Golgi membrane appears unaffected in mitotic cells. Surprisingly, this pool of COPI is dependent upon GBF1 for its recruitment to the membrane, suggesting a low level of GBF1 activity persists in mitosis. We propose that the phosphorylation and membrane dissociation of GBF1 and the consequent reduction in ARF-GTP levels in mitosis are important for changes in Golgi dynamics and possibly other mitotic events mediated through effectors other than the COPI vesicle coat.
Resumo:
The question of which factors are central in determining whether a cell will undertake a new round of mitosis or will decycle has been examined in the isolated thymic lymphocyte model. Such cell populations possess both in vivo and in vitro a subpopulation of quiescent lymphoblasts which may be induced to reinitiate their mitotic programme. In the intact animal the major determinant of proliferative activity is the plasma ionised calcium concentration. However it has been established in culture that a variety of hormones, ions, cyclic nucleotides, plant lectins and ionophores may like calcium elicit a mitogenic response. These agents do not appear however to initiate DNA synthesis in an identical fashion. Rather there are two distinct intracellular mitogenic axes. The first axis includes a number of adenylate cyclase stimulants, cyclic AMP, phosphodiesterase inhibitors and magnesium ions. It was found that all these mitogens required extracellular magnesium ions to exhibit their stimulatory capacity. This dichotomy in mitogenic activity was further emphasised by the observation that these mitogens are all inhibited by testosterone, whilst the magnesium-independent mitogens were insensitive to this androgen. Indeed this second group of stimulatory factors required the presence of calcium ions in the extracellular milieu for activity, and were, in contrast to the magnesium-dependent mitogens inhibited by the presence of oestradiol in the culture. By examining the interrelationships between these various mitogens and inhibitors it has been possible to propose a mechanism to describe the activation process in the thymocyte. Studies of the metabolism of cyclic nucleotides, membrane potential and transmembrane ion fluxes indicate that there may be a complex relationship between membrane fluidity, ion balance and cyclic nucleotide levels which may individually or in concert promote the initiation of DNA synthesis. A number of possible mechanisms are discussed to account for these observations.