2 resultados para CdS nanoparticles Luminescence
em Aston University Research Archive
Resumo:
Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as μM.
Resumo:
Hollow nanostructures with a highly oriented lattice structure and active facets are promising for catalytic applications, while their preparation via traditional approaches contains multiple steps and is time and energy consuming. Here, we demonstrate a new one-step strategy involving two complementary reactions which promote each other; it is capable of producing unique hollow nanoparticles. Specifically, we apply synergic cooperation of cation exchange and chemical etching to attack PbS nanosized cubes (NCs) and produce CdS quasi-monocrystal nanoboxes (QMNBs) which possess the smallest dimensions reported so far, a metastable zinc-blende phase, a large specific surface area, and particularly high-energy {100} facets directly visualized by aberration-corrected scanning transmission electron microscopy. These properties in combination allow the nanoboxes to acquire exceptional photocatalytic activities. As an extension of the approach, we use the same strategy to prepare Co9S8 and Cu7.2S4 single-crystal hollow nanooctahedrons (SCHNOs) successfully. Hence, the synergic reaction synthesis strategy exhibits great potential in engineering unique nanostructures with superior properties.