25 resultados para Causality (Physics)
em Aston University Research Archive
Resumo:
Low-density parity-check codes with irregular constructions have recently been shown to outperform the most advanced error-correcting codes to date. In this paper we apply methods of statistical physics to study the typical properties of simple irregular codes. We use the replica method to find a phase transition which coincides with Shannon's coding bound when appropriate parameters are chosen. The decoding by belief propagation is also studied using statistical physics arguments; the theoretical solutions obtained are in good agreement with simulation results. We compare the performance of irregular codes with that of regular codes and discuss the factors that contribute to the improvement in performance.
Resumo:
In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.
Resumo:
We study the performance of Low Density Parity Check (LDPC) error-correcting codes using the methods of statistical physics. LDPC codes are based on the generation of codewords using Boolean sums of the original message bits by employing two randomly-constructed sparse matrices. These codes can be mapped onto Ising spin models and studied using common methods of statistical physics. We examine various regular constructions and obtain insight into their theoretical and practical limitations. We also briefly report on results obtained for irregular code constructions, for codes with non-binary alphabet, and on how a finite system size effects the error probability.
Resumo:
The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.
Resumo:
The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the two-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges. ©2002 The American Physical Society.
Resumo:
We propose a method based on the magnetization enumerator to determine the critical noise level for Gallager type low density parity check error correcting codes (LDPC). Our method provides an appealingly simple interpretation to the relation between different decoding schemes, and provides more optimistic critical noise levels than those reported in the information theory literature.
Resumo:
This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.
Resumo:
Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.
Resumo:
Properties of computing Boolean circuits composed of noisy logical gates are studied using the statistical physics methodology. A formula-growth model that gives rise to random Boolean functions is mapped onto a spin system, which facilitates the study of their typical behavior in the presence of noise. Bounds on their performance, derived in the information theory literature for specific gates, are straightforwardly retrieved, generalized and identified as the corresponding macroscopic phase transitions. The framework is employed for deriving results on error-rates at various function-depths and function sensitivity, and their dependence on the gate-type and noise model used. These are difficult to obtain via the traditional methods used in this field.
Resumo:
Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.
Resumo:
In this thesis we use statistical physics techniques to study the typical performance of four families of error-correcting codes based on very sparse linear transformations: Sourlas codes, Gallager codes, MacKay-Neal codes and Kanter-Saad codes. We map the decoding problem onto an Ising spin system with many-spins interactions. We then employ the replica method to calculate averages over the quenched disorder represented by the code constructions, the arbitrary messages and the random noise vectors. We find, as the noise level increases, a phase transition between successful decoding and failure phases. This phase transition coincides with upper bounds derived in the information theory literature in most of the cases. We connect the practical decoding algorithm known as probability propagation with the task of finding local minima of the related Bethe free-energy. We show that the practical decoding thresholds correspond to noise levels where suboptimal minima of the free-energy emerge. Simulations of practical decoding scenarios using probability propagation agree with theoretical predictions of the replica symmetric theory. The typical performance predicted by the thermodynamic phase transitions is shown to be attainable in computation times that grow exponentially with the system size. We use the insights obtained to design a method to calculate the performance and optimise parameters of the high performance codes proposed by Kanter and Saad.
Resumo:
High strength, high modulus carbon fibres are becoming increasingly important as high performance engineering materials. This thesis describes how they may be prepared by heat treatment from filaments spun from polyacrylonitrile and its copolymers. The chemistry of the first stages of heat treatment is very important in controlling the mechanical properties of the carbonised product. A cyclisation reaction has been found to be responsible for the relatively high thermal stability of pyrolysed polyacrylonitrile, but without oxidation the fibres degrade and fuse. An initial oxidation stage is, therefore, essential to the preparation of fibre of high orientation. The cyclised product of pyrolysis is probably a poly 1,4 dihydropiridine and oxidation converts this to aromatic structures, and cyclised structures containing carbonyl and other oxygenated groups. Oxidation is found to assist the carbon fibre preparation process, by producing a product which condenses at an earlier stage of heat treatment, before fusion can occur. Carbon fibre strength and modulus are dependent upon producing a highly oriented crystal structure. While oxidation of the polymer stabilises the fibre so as to prevent disorientation, further large increases in orientation, with a commensurate improvement in strength and modulus, can be obtained by stretching at temperatures above 1,700 °C. This process is analogous to the way fibre orientation is increased by the stretching of the precursor. A lamellar graphite structure can be created in high temperature fibre, by carefully controlling the degree of oxidation. This type of graphite can produce very high values of Young's modulus. More often, however, graphite fibre has a fibrillar fine structure, which is explicable in terms of continuous graphite ribbons. A ribbon model is the most satisfactory representation of the structure of carbon fibre, as it explains the mechanism of the development of long range order and the variation of Young's modulus with crystalline preferred orientation.
Resumo:
Economic media inform on prices of three well established crude oil benchmarks: Brent, WTI and Dubai Fateh. The relevance of these is however declining with their low output - motivating investigation of the pricing dynamics. We apply Granger causality tests to study the price dependencies of 32 crude oils. The aim is to establish what crudes are setting the prices and what crudes are just following the general market trends. The investigation is performed globally as well as for different quality, geographical and organisational segments. The results indicate that crude oil price analysts should follow at least four different crudes that are good price indicators. WTI and Brent still lead the market, but they are not the only crude prices worth paying attention to. In particular, Russian Urals drives global prices in a significant way, and Iran Seri Kerir is a significant price setter within OPEC. Dubai Fateh does not display any significant influence as a price setter, which confirms the lack of dominant benchmark within the segment of medium quality crudes.
Resumo:
Inference and optimisation of real-value edge variables in sparse graphs are studied using the tree based Bethe approximation optimisation algorithms. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained for networks in various cases. These include different cost functions, connectivity values, constraints on the edge bandwidth and the case of multiclass optimisation.
Resumo:
Recent advances in our ability to watch the molecular and cellular processes of life in action-such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer-raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.