16 resultados para Catalysis alkali
em Aston University Research Archive
Resumo:
Mg-Al hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting Mg-HT/AlO catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C-C triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores. © 2014 The Royal Society of Chemistry.
Resumo:
We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon (23%), nitrogen and sulphur (<1%), limiting the surface area to 23 m2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s.
Resumo:
It has been previously established that alkali silica reaction (ASR) in concrete may be controlled by blending Portland cement with suitable hydraulic or pozzolanic materials. The controlling mechanism has been attributed to the dilution of the cement's alkali content and reduced mobility of ions in concrete's pore solution. In this project an attempt has been made to identify the factors which influence the relative importance of each mechanism in the overall suppression of the reaction by the use of blended cements. The relationship between the pore solution alkalinity and ASR was explored by the use of expansive mortar bars submerged in alkaline solutions of varying concentration. This technique enabled the blended cement's control over expansion to be assessed at given `pore solution' alkali concentrations. It was established that the cement blend, the concentration and quantity of alkali present in the pore solution were the factors which determined the rate and extent of ASR. The release of alkalis into solution by Portland cements of various alkali content was studied by analysis of pore solution samples expressed from mature specimens. The specification for avoiding ASR by alkali limitation, both by alkali content of cement and the total quantity of alkali were considered. The effect on the pore solution alkalinity when a range of Portland cements were blended with various replacement materials was measured. It was found that the relationship between the type of replacement material, its alkali content and that of the cement were the factors which primarily determined the extent of the pore solution alkali dilution effect. It was confirmed that salts of alkali metals of the kinds found as common concrete contaminants were able to increase the pore solution hydroxyl ion concentration significantly. The increase was limited by the finite anion complexing ability of the cement.
Resumo:
A group of lithologically varied UK aggregates have been incorporated into concrete prisms of variable alkali content to ascertain the alkali levels at which significant ASR first occurs at 38oC and 100% RH. Petrographical analysis was used to establish the source of reactivity. The results of these expansion tests showed that significant ASR can develop with certain aggregates at initial alkali levels as low as 3.5 kg/m3 Na2Oe. Similar prisms were made at initial alkali levels, well above, on and just below the alkali thresholds for each aggregate. These prisms were placed in salt solution to establish the effects of ASR. The results showed that an external source of NaCl does accentuate ASR in high alkali mixes. However, in low alkali mixes the ASR initiated was even greater than that developed by the high alkali mixes. It was proposed that an `initial alkali pessimum' existed for each aggregate type for specimens placed in salt solution. Electron microprobe analysis of the ASR gels from concretes immersed in salt solution, showed that two compositionally varied gel suites develop. The first suite was derived from ASR caused by the initial alkalis in a concrete mix and was identical to ASR gels derived from the various concretes when immersed in distilled water. The second suite was developed by alkalis derived from a reaction between NaCl and the C3A component of the cement paste. It was demonstrated that the `initial alkali pessimum' was probably due to a combination of these two ASR types at the alkali threshold point where both suites of ASR gel can develop. Equivalent mixes were made with a 25% replacement of the cement by pulverised fuel ash (pfa) to establish whether alkalis released from the pfa could initiate ASR in otherwise non-reactive low alkali mixes. The addition of air entrainment to reactive concrete mixes was also examined as a method of suppressing ASR.
Resumo:
Biofuels and chemicals from biomass mean the gasification of biogenic feedstocks and the synthesis via methanol, dimethylester (DME) or Fischer-Tropsch products. To prevent the sensitive synthesis catalysts from poisoning the syngas must be free of tar and particulates. The trace concentrations of S-, C1-, N-species, alkali and heavy metals must be of the order of a few ppb. Moreover maximum conversion efficiency will be achieved performing the gas cleaning above the synthesis conditions. The concept of an innovative dry HTHP syngas cleaning is presented. Based on the HT particle filtration and suitable sorption and catalysis processes for the relevant contaminants a total concept will be derived, which leads to a syngas quality required for synthesis catalysts in only 2 combined stages. The experimental setup for the HT gas cleaning behind the 60 kWtherm entrained flow gasifier REGA of the institute is described. Results from HT filter experiments in pilot scale are presented. The performance of 2 natural minerals for HC1 and H2S sorption is discussed with respect to the parameters temperature, surface and residence time. Results from lab scale investigations on low temperature tar catalysts' performance (commercial and proprietary development) are discussed finally.
Resumo:
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2
Resumo:
Phosphorus is a key plant nutrient and as such, is incorporated into growing biomass in small amounts. This paper examines the influence of phosphorus, present in either acid (HPO) or salt ((NH)PO) form, on the pyrolysis behaviour of both Miscanthus × giganteus, and its cell wall components, cellulose, hemicellulose (xylan) and lignin (Organosolv). Pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) is used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) is used to examine the distribution of char and volatiles. Phosphorus salts are seen to catalyse the pyrolysis and modify the yields of products, resulting in a large increase in char yield for all samples, but particularly for cellulose and Miscanthus. The thermal degradation processes of cellulose, xylan and Miscanthus samples occur in one step and the main pyrolysis step is shifted to lower temperature in the presence of phosphorus. A small impact of phosphorus was observed in the case of lignin char yields and the types of pyrolysis decomposition products produced. Levoglucosan is a major component produced in fast pyrolysis of cellulose. Furfural and levoglucosenone become more dominant products upon P-impregnation pointing to new rearrangement and dehydration routes. The P-catalysed xylan decomposition route leads to a much simpler mixture of products, which are dominated by furfural, 3-methyl-2-cyclopenten-1-one and one other unconfirmed product, possibly 3,4-dihydro-2-methoxy-2H-pyran or 4-hydroxy-5,6-dihydro-(2H)-pyran-2-one. Phosphorus-catalysed lignin decomposition also leads to a modified mixture of tar components and desaspidinol as well as other higher molecular weight component become more dominant relative to the methoxyphenyl phenols, dimethoxy phenols and triethoxy benzene. Comparison of the results for Miscanthus lead to the conclusion that the understanding of the fast pyrolysis of biomass can, for the most part, be gained through the study of the individual cell wall components, provided consideration is given to the presence of catalytic components such as phosphorus.
Resumo:
Short rotation willow coppice (SRC) and a synthetic biomass, a mixture of the basic biomass components (cellulose, hemicellulose and lignin), have been investigated for the influence of potassium on their pyrolysis behaviours. The willow sample was pre-treated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with potassium. The same type of pre-treatment was applied to components of the synthetic biomass. Characterisation was performed using thermogravimetric analysis with measurement of products by means of Fourier transform infrared spectroscopy (TGA-FTIR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). A comparison of product distributions and kinetics are reported. While the general features of decomposition of SRC are described well by an additive behaviour of the individual components, there are some differences in the magnitude of the influence of potassium, and on the products produced. For both SRC and the synthetic biomass, TGA traces indicate catalytic promotion of both of the two-stages of biomass decomposition, and potassium can lower the average apparent first-order activation energy for pyrolysis by up to 50 kJ/mol. For both SRC and synthetic biomass the yields and distribution of pyrolysis products have been influenced by the presence of the catalyst. Potassium catalysed pyrolysis increases the char yields markedly and this is more pronounced for synthetic biomass than SRC. Gas evolution profiles during pyrolysis show the same general features for both SRC and synthetic biomass. Relative methane yields increase during the char formation stage of pyrolysis of the potassium doped samples. The evolution profiles of acetic acid and formaldehyde change, and these products are seen in lower relative amounts for both the demineralised samples. A greater variation in pyrolysis products is observed from the treated SRC samples compared to the different synthetic biomass samples. Furthermore, substituted phenols from lignin pyrolysis are more dominant in the pyrolysis profiles of the synthetic biomass than of the SRC, implying that the extracted lignins used in the synthetic biomass yield a greater fraction of monomeric type species than the lignocellulosic cell wall material of SRC. For both types of samples, PY-GS-MS analyses show that potassium has a significant influence on cellulose decomposition markers, not just on the formation of levoglucosan, but also other species from the non-catalysed mechanism, such as 3,4-dihydroxy-3-cyclobutene-1,2-dione. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.
Resumo:
The first demonstration of heterogeneous catalysis within an oscillatory baffled flow reactor (OBR) is reported, exemplified by the solid acid catalysed esterification of organic acids, an important prototypical reaction for fine chemicals and biofuel synthesis. Suspension of a PrSOH-SBA-15 catalyst powder is readily achieved within the OBR under an oscillatory flow, facilitating the continuous esterification of hexanoic acid. Excellent semi-quantitative agreement is obtained between OBR and conventional stirred batch reaction kinetics, demonstrating efficient mixing, and highlighting the potential of OBRs for continuous, heterogeneously catalysed liquid phase transformations. Kinetic analysis highlights acid chain length (i.e. steric factors) as a key predictor of activity. Continuous esterification offers improved ester yields compared with batch operation, due to the removal of water by-product from the catalyst, evidencing the versatility of the OBR for heterogeneous flow chemistry and potential role as a new clean catalytic technology. © The Royal Society of Chemistry 2013.
Resumo:
Concern over the economics of accessing fossil fuel reserves, and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting such carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Here we discuss catalytic esterification and transesterification solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands.
Resumo:
Enantioselective catalysis is an increasingly important method of providing enantiomeric compounds for the pharmaceutical and agrochemical industries. To date, heterogeneous catalysts have failed to match the industrial impact achieved by homogeneous systems. One successful approach to the creation of heterogeneous enantioselective catalysts has involved the modification of conventional metal particle catalysts by the adsorption of chiral molecules. This article examines the contribution of effects such as chiral recognition and amplification to these types of system and how insight provided by surface science model studies may be exploited in the design of more effective catalysts.
Resumo:
Here we demonstrate the first application of time-resolved synchrotron X-ray absorption spectroscopy to simultaneously follow dynamic nanoparticle surface restructuring and the evolution of surface and gas-phase products during an organic reaction. Surface palladium oxide, and not metal, is identified as the catalytic species responsible for the selective oxidation (selox) of crotyl alcohol to crotonaldehyde. Elevated reaction temperatures facilitate reversible nanoparticle redox processes, and concomitant catalytic selectivity loss, in response to reaction conditions. These discoveries highlight the importance of stabilizing surface palladium oxide and minimizing catalyst reducibility in order to achieve high selox yields, and will aid the future design of Pd-derived selox catalysts. This discovery has important implications for the design of future liquid and vapor phase selox catalysts, and the thermochemical behavior of Pd nanostructures in general.
Resumo:
A series of alkali-doped metal oxide catalysts were prepared and evaluated for activity in the transesterification of rapeseed oil to biodiesel. Of those evaluated, LiNO3/CaO, NaNO3/CaO, KNO3/CaO and LiNO3/MgO exhibited >90% conversion in a standard 3 h test. There was a clear correlation between base strength and activity. These catalysts appeared to be promising candidates to replace conventional homogeneous catalysts for biodiesel production as the reaction times are low enough to be practical in continuous processes and the preparations are neither prohibitively difficult nor costly. However, metal leaching from the catalyst was detected, and this resulted in some homogeneous activity. This would have to be resolved before these catalysts would be viable for large-scale biodiesel production facilities.
Resumo:
Book review