9 resultados para Cat Striate Cortex

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To spatially and temporally characterise the cortical contrast response function to pattern onset stimuli in humans. Methods: Magnetoencephalography (MEG) was used to investigate the human cortical contrast response function to pattern onset stimuli with high temporal and spatial resolution. A beamformer source reconstruction approach was used to spatially localise and identify the time courses of activity at various visual cortical loci. Results: Consistent with the findings of previous studies, MEG beamformer analysis revealed two simultaneous generators of the pattern onset evoked response. These generators arose from anatomically discrete locations in striate and extra-striate visual cortex. Furthermore, these loci demonstrated notably distinct contrast response functions, with striate cortex increasing approximately linearly with contrast, whilst extra-striate visual cortex followed a saturating function. Conclusions: The generators that underlie the pattern onset visual evoked response arise from two distinct regions in striate and extra-striate visual cortex. Significance: The spatially, temporally and functionally distinct mechanisms of contrast processing within the visual cortex may account for the disparate results observed across earlier studies and assist in elucidating causal mechanisms of aberrant contrast processing in neurological disorders. © 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study characterizes the visually evoked magnetic response (VEMR) to pattern onset/offset stimuli, using a single channel BTi magnetometer. The influence of stimulus parameters and recording protocols on the VEMR is studied with inferences drawn about the nature of cortical processing, its origins and optimal recording strategies. Fundamental characteristics are examined, such as the behaviour of successive averaged and unaveraged responses; the effects of environmental shielding; averaging; inter- and intrasubject variability and equipment specificity. The effects of varying check size, field size, contrast and refractive error on latency, amplitude and topographic distribution are also presented. Latency and amplitude trends are consistent with previous VEP findings and known anatomical properties of the visual system. Topographic results are consistent with the activity of sources organised according to the cruciform model of striate cortex. A striate origin for the VEMR is also suggested by the results to quarter, octant and annulus field stimuli. Similarities in the behaviour and origins of the sources contributing to the CIIm and CIIIm onset peaks are presented for a number of stimulus conditions. This would be consistent with differing processing event in the same, or similar neuronal populations. Focal field stimuli produce less predictable responses than full or half fields, attributable to a reduced signal to noise ratio and an increased sensitivity to variations in cortical morphology. Problems with waveform peak identification are encountered for full field stimuli that can only be resolved by the careful choice of stimulus parameters, comparisons with half field responses or with reference to the topographic distribution of each waveform peak. An anatomical study of occipital lobe morphology revealed large inter- and intrasubject variation in calcarine fissure shape and striate cortex distribution. An appreciation of such variability is important for VEMR interpretation, due to the technique's sensitivity to source depth and orientation, and it is used to explain the experimental results obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The waveform and scalp distribution of the visual evoked potentials elicited by stimuli in the foveal and parafoveal regions have been investigated in a group of normal humans using a 16-channel `brain mapping' system. The waveform and topography of the responses to pattern onset and pattern reversal stimulation were investigated, using 4 x 4o full field and 4 x 2o lateral and altitudinal half-field stimuli. The responses were composed of several successive peaks which are in some respects consistent with those demonstrated by other workers using larger field sizes. The differences in the behaviour of these components with respect to the position of the stimulus in the visual field were suggestive of origins in different areas of the visual cortex and/or different visual mechanism. Of particular interest were the major early positive components `P90' and `P95' of the responses to pattern onset and pattern reversal stimulation respectively. More detailed exploration of the behaviour of these major early positive components was carried out using `M-scaled' stimuli selected to activate one square centimetre patches of striate cortex and associated extrastriate re-projections, positioned at different points in the foveal and parafoveal area of the visual field. The inter- and intra-subject variability in amplitude and localisation of the signals elicited by these targets was considered to be a reflection of the individual variations in relationship of visual field projections with the pattern of gyri and fissures on the proximal surface of the occipital lobe. The behaviour of component P90 of the onset response is consistent with a lateral origin in extrastriate visual cortex; that of P95 of the pattern reversal response is consistent in some respects with a striate cortical origin, but in others with a partial origin in extrastriate cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The topographical distribution of the pattern reversal Visual Evoked Response (VER) was recorded from a localised montage of 20 electrodes over the visual cortex. The response was recorded after stimulation with a black and white checkerboard stimulus. The effect of field location on the major components was investigated in 11 subjects (age range (23-55). The major components of the half field response were; a negative around 75ms (N75) followed by a positivity around 80ms (P80), then a positivity around 100ms (P100) followed by another positivity at around 120ms (P120) and a negativity at approximately 145ms (N145). No effect of field size could be demonstrated on either the amplitude or latency of the late negativity, N145. No significant effect of field size or location was shown on the latency of the P100 response. A delay previously shown in the upper half field response was therefore not substantiated. In contrast the amplitude of the major positivity, P100 was significantly affected by the field size and location. The amplitude of both P100 and N145 were significantly reduced following upper field stimulation when compared with the lower field response. No significant amplitude difference between the upper and lower field responses was demonstrated using electroretinography, the amplitude may therefore be reduced as a result of the ventral position of the upper field representation on the visual cortex. The lateral half field VEP was compared with the distribution of the visual evoked magnetic response (VEMR). The distribution of the VEMR supported the proposal that the paradoxical lateralisation of the VEP half field response is the result of the source being directed ipsilaterally. The morphology of the VEP following octant and double octant stimulation suggests that the response is generated in the striate cortex, with a reversal in response distribution following stimulation of the upper vertical and horizontal meridia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report two functional magnetic resonance imaging (fMRI) experiments which reveal a cortical network activated when perceiving coloured grids, and experiencing the McCollough effect (ME). Our results show that perception of red-black and green-black grids activate the right fusiform gyrus (area V4) plus the left and right lingual gyri, right striate cortex (V1) and left insula. The ME activated the left anterior fusiform gyrus as well as the ventrolateral prefrontal cortex, and in common with colour perception, the left insula. These data confirm the critical role of the fusiform gyrus in actual and illusory colour perception as well as revealing localized frontal cortical activation associated with the ME, which would suggest that a 'top-down' mechanism is implicated in this illusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pathological changes in striate (B17, V1) and extrastriate (B18, V2) visual cortex were studied in variant Creutzfeldt-Jakob disease (vCJD). No differences in densities of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of prion protein (PrP) were greater in B18. PrP deposit densities in B17 and B18 were positively correlated. Diffuse deposit density in B17 was negatively correlated with the density of surviving neurons in B18. The vacuoles either exhibited a density peak in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse deposits were most frequent in laminae II/III and florid deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI than in B17. Hence, both striate and extrastriate visual cortex is affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 appears to be associated with diffuse PrP deposit formation in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is an exploration of the oscillatory changes occurring in the visual cortex as measured by a functional imaging technique known as Synthetic Aperture Magnetometry (SAM), and how these compare to the BOLD response, across a number of different experimental paradigms. In chapter one the anatomy and physiology of the visual pathways and cortex are outlined, introducing the reader to structures and terms used throughout the thesis whilst chapter two introduces both the technology and analysis techniques required to record MEG and fMRI and also outlines the theory behind SAM. In chapter three the temporal frequency tuning of both striate and extrastriate cortex is investigated, showing fundamental differences in both tuning characteristics and oscillatory power changes between the two areas. Chapter four introduces the concept of implied-motion and investigates the role of area V5 / MT in the perception of such stimuli and shows, for the first time, the temporal evolution of the response in this area. Similarly a close link is shown between the early evoked potential, produced by the stimulus, and previous BOLD responses. Chapter five investigates the modulation of cortical oscillations to both shifts in attention and varying stimulus contrast. It shows that there are both induced and evoked modulation changes with attention, consistent with areas previously known to show BOLD responses. Chapter six involves a direct comparison of cortical oscillatory changes with those of the BOLD response in relation to the parametric variation of a motion coherence stimulus. It is shown that various cortical areas show a linear BOLD response to motion coherence and, for the first time, that both induced oscillatory and evoked activity also vary linearly in areas coincidental with the BOLD response. The final chapter is a summary of the main conclusions and suggests further work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.