51 resultados para Cascaded multilevel inverter
em Aston University Research Archive
Resumo:
Cascaded multilevel inverters-based Static Var Generators (SVGs) are FACTS equipment introduced for active and reactive power flow control. They eliminate the need for zigzag transformers and give a fast response. However, with regard to their application for flicker reduction in using Electric Arc Furnace (EAF), the existing multilevel inverter-based SVGs suffer from the following disadvantages. (1) To control the reactive power, an off-line calculation of Modulation Index (MI) is required to adjust the SVG output voltage. This slows down the transient response to the changes of reactive power; and (2) Random active power exchange may cause unbalance to the voltage of the d.c. link (HBI) capacitor when the reactive power control is done by adjusting the power angle d alone. To resolve these problems, a mathematical model of 11-level cascaded SVG, was developed. A new control strategy involving both MI (modulation index) and power angle (d) is proposed. A selected harmonics elimination method (SHEM) is taken for switching pattern calculations. To shorten the response time and simplify the controls system, feed forward neural networks are used for on-line computation of the switching patterns instead of using look-up tables. The proposed controller updates the MI and switching patterns once each line-cycle according to the sampled reactive power Qs. Meanwhile, the remainder reactive power (compensated by the MI) and the reactive power variations during the line-cycle will be continuously compensated by adjusting the power angles, d. The scheme senses both variables MI and d, and takes action through the inverter switching angle, qi. As a result, the proposed SVG is expected to give a faster and more accurate response than present designs allow. In support of the proposal there is a mathematical model for reactive powered distribution and a sensitivity matrix for voltage regulation assessment, MATLAB simulation results are provided to validate the proposed schemes. The performance with non-linear time varying loads is analysed and refers to a general review of flicker, of methods for measuring flickers due to arc furnace and means for mitigation.
Resumo:
To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.
Resumo:
We develop an analytical method for optimizing phase sensitive amplifiers for regeneration in multilevel phase encoded transmission systems. The model accurately predicts the optimum transfer function characteristics and identifies operating tolerances for different signal constellations and transmission scenarios. The results demonstrate the scalability of the scheme and show the significance of having simultaneous optimization of the transfer function and the signal alphabet. The model is general and can be applied to any regenerative system. © 2013 Optical Society of America.
Resumo:
A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.
Resumo:
This study describes an optimised modulation strategy based on switching state sequences for the hybrid-clamped multilevel converter. Two key control variables defined as 'phase shift angle' and 'switching state change' for a five-level hybrid-clamped inverter are proposed to improve all switches' operation, and by changing their values, different control methods can be obtained for modulation optimisation purposes. Two example methods can solve the voltage imbalance problem of the dc-link capacitors and furthermore avoid two switches' simultaneous switching transitions and improve the inverter's performance as compared with the traditional phase disposition pulse-width modulation strategy. A 6 kW prototype inverter is developed and a range of simulation and experiments are carried out for validation. It is found that simulation and experimental results are in a good agreement and the proposed modulation strategy is verified in terms of low-order harmonic reduction.
Resumo:
In multilevel analyses, problems may arise when using Likert-type scales at the lowest level of analysis. Specifically, increases in variance should lead to greater censoring for the groups whose true scores fall at either end of the distribution. The current study used simulation methods to examine the influence of single-item Likert-type scale usage on ICC(1), ICC(2), and group-level correlations. Results revealed substantial underestimation of ICC(1) when using Likert-type scales with common response formats (e.g., 5 points). ICC(2) and group-level correlations were also underestimated, but to a lesser extent. Finally, the magnitude of underestimation was driven in large part to an interaction between Likert-type scale usage and the amounts of within- and between-group variance. © Sage Publications.
Resumo:
Marketing scholars are increasingly recognizing the importance of investigating phenomena at multiple levels. However, the analyses methods that are currently dominant within marketing may not be appropriate to dealing with multilevel or nested data structures. We identify the state of contemporary multilevel marketing research, finding that typical empirical approaches within marketing research may be less effective at explicitly taking account of multilevel data structures than those in other organizational disciplines. A Monte Carlo simulation, based on results from a previously published marketing study, demonstrates that different approaches to analysis of the same data can result in very different results (both in terms of power and effect size). The implication is that marketing scholars should be cautious when analyzing multilevel or other grouped data, and we provide a discussion and introduction to the use of hierarchical linear modeling for this purpose.
Resumo:
So far there has been scant empirical attention paid to the role of the sales force in the adoption of new brands in the early implementation stages. We test a framework of internal (sales manager and salespeople) brand adoption using an empirical multilevel study. Our findings suggest that the construct of expected customer demand (ECD) plays an important role in sales force brand adoption. First, ECD directly influences salespeople’s and sales managers’ brand adoption. Second, ECD serves as a cross-level moderator of new brand adoption transmission. We find the influence of sales managers’ brand adoption on salespeople’s brand adoption to be stronger when salespeople’s ECD is lower.
Resumo:
Background Autologous chondrocyte implantation is a cell therapeutic approach for the treatment of chondral and osteochondral defects in the knee joint. The authors previously reported on the histologic and radiologic outcome of autologous chondrocyte implantation in the short- to midterm, which yields mixed results. Purpose The objective is to report on the clinical outcome of autologous chondrocyte implantation for the knee in the midterm to long term. Study Design Cohort study; Level of evidence, 3. Methods Eighty patients who had undergone autologous chondrocyte implantation of the knee with mid- to long-term follow-up were analyzed. The mean patient age was 34.6 years (standard deviation, 9.1 years), with 63 men and 17 women. Seventy-one patients presented with a focal chondral defect, with a median defect area of 4.1 cm2 and a maximum defect area of 20 cm2. The modified Lysholm score was used as a self-reporting clinical outcome measure to determine the following: (1) What is the typical pattern over time of clinical outcome after autologous chondrocyte implantation; and (2) Which patient-related predictors for the clinical outcome pattern can be used to improve patient selection for autologous chondrocyte implantation? Results The average follow-up time was 5 years (range, 2.7–9.3). Improvement in clinical outcome was found in 65 patients (81%), while 15 patients (19%) showed a decline in outcome. The median preoperative Lysholm score of 54 increased to a median of 78 points. The most rapid improvement in Lysholm score was over the 15-month period after operation, after which the Lysholm score remained constant for up to 9 years. The authors were unable to identify any patient-specific factors (ie, age, gender, defect size, defect location, number of previous operations, preoperative Lysholm score) that could predict the change in clinical outcome in the first 15 months. Conclusion Autologous chondrocyte implantation seems to provide a durable clinical outcome in those patients demonstrating success at 15 months after operation. Comparisons between other outcome measures of autologous chondrocyte implantation should be focused on the clinical status at 15 months after surgery. The patient-reported clinical outcome at 15 months is a major predictor of the mid- to long-term success of autologous chondrocyte implantation.
Resumo:
Following adaptation to an oriented (1-d) signal in central vision, the orientation of subsequently viewed test signals may appear repelled away from or attracted towards the adapting orientation. Small angular differences between the adaptor and test yield 'repulsive' shifts, while large angular differences yield 'attractive' shifts. In peripheral vision, however, both small and large angular differences yield repulsive shifts. To account for these tilt after-effects (TAEs), a cascaded model of orientation estimation that is optimized using hierarchical Bayesian methods is proposed. The model accounts for orientation bias through adaptation-induced losses in information that arise because of signal uncertainties and neural constraints placed upon the propagation of visual information. Repulsive (direct) TAEs arise at early stages of visual processing from adaptation of orientation-selective units with peak sensitivity at the orientation of the adaptor (theta). Attractive (indirect) TAEs result from adaptation of second-stage units with peak sensitivity at theta and theta+90 degrees , which arise from an efficient stage of linear compression that pools across the responses of the first-stage orientation-selective units. A spatial orientation vector is estimated from the transformed oriented unit responses. The change from attractive to repulsive TAEs in peripheral vision can be explained by the differing harmonic biases resulting from constraints on signal power (in central vision) versus signal uncertainties in orientation (in peripheral vision). The proposed model is consistent with recent work by computational neuroscientists in supposing that visual bias reflects the adjustment of a rational system in the light of uncertain signals and system constraints.
Resumo:
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.
Resumo:
A compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long-period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre is presented. One of the LPGs is sensitive to both SRI and temperature, whilst the second is sensitive to temperature only.
Resumo:
The authors present a model of the multilevel effects of diversity on individual learning performance in work groups. For ethnically diverse work groups, the model predicts that group diversity elicits either positive or negative effects on individual learning performance, depending on whether a focal individual’s ethnic dissimilarity from other group members is high or low. By further considering the societal status of an individual’s ethnic origin within society (Anglo versus non-Anglo for our U.K. context), the authors hypothesize that the model’s predictions hold more strongly for non-Anglo group members than for Anglo group members. We test this model with data from 412 individuals working on a 24-week business simulation in 87 four- to seven-person groups with varying degrees of ethnic diversity. Two of the three hypotheses derived from the model received full support and one hypothesis received partial support. Implications for theory development, methods, and practice in applied group diversity research are discussed.