20 resultados para Carrier Sanctions
em Aston University Research Archive
Resumo:
The bleaching of the n = 1 heavy-hole and light-hole exciton absorption has been studied at room temperature and zero bias in a strain-balanced InGaAs/InAsP multiple quantum well. Pump-probe spectroscopy was used to measure the decay of the light-hole absorption saturation, giving a hole lifetime of only 280 ps. As only 16 meV separates the light- and heavy-hole bands, the short escape time can be explained by thermalization between these bands followed by thermionic emission over the heavy-hole barrier. The saturation density was estimated to be 1 × 1016 cm-3; this is much lower than expected for tensile-strained wells where both heavy and light holes have large in-plane masses. © 1998 American Institute of Physics.
Resumo:
Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150(glued) component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.
Resumo:
We demonstrate a novel Rayleigh interferometric noise mitigation scheme for applications in carrier-distributed dense wavelength division multiplexed (DWDM) passive optical networks at 10 Gbit/s using carrier suppressed subcarrier-amplitude modulated phase shift keying modulation. The required optical signal to Rayleigh noise ratio is reduced by 12 dB, while achieving excellent tolerance to dispersion, subcarrier frequency and drive amplitude variations.
Resumo:
We report a novel real-time homodyne coherent receiver based on a DPSK optical-electrical-optical (OEO) regenerator used to extract a carrier from carrier-less phase modulated signals based on feed-forward based modulation stripping. The performance of this non-DSP based coherent receiver was evaluated for 10.66Gbit/s BPSK signals. Self-homodyne coherent detection and homodyne detection with an injection-locked local oscillator laser was demonstrated. The performance was evaluated by measuring the electrical signal-to-noise (SNR) and recording the eye diagrams. Using injection-locking for the LO improves the performance and enables homodyne detection with optical injection-locking to operate with carrier-less BPSK signals without the need for polarization multiplexed pilot-tones.
Resumo:
We experimentally demonstrate a novel synchronous 10.66Gbit/s DPSK OEO regenerator which uses a feed-forward carrier extraction scheme with an injection-locked laser to synchronize the regenerated signal wavelength to the incoming signal wavelength. After injection-locking, a low-cost DFB laser used at the regenerator exhibited the same linewidth characteristics as the narrow line-width transmitter laser. The phase regeneration properties of the regenerator were evaluated by emulating random Gaussian phase noise applied to the DPSK signal before the regenerator using a phase modulator driven by an arbitrary waveform generator. The overall performance was evaluated in terms of electrical eye-diagrams, BER measurements, and constellation diagrams.
Resumo:
A femtosecond pump-probe setup was used to measure the time resolved reflectivity of hydrogenated amorphous silicon containing crystalline silicon nanoparticles at eight different incidence angles. Results fitted with the Drude model found a scattering rate of G = 2-1+1.2×1015?s-1 at a corresponding carrier concentration of ~ 1020?cm-3. The observed scattering rate is attributed to enhanced carrier-carrier interaction in optically pumped nanocrystals.
Resumo:
Effect of the carrier shape in the ultra high dense wavelength division multiplexing (WDM) return to zero differential phase shift keying (RZ-DPSK) transmission has been examined through numerical optimization of the pulse form, duty cycle and narrow multiplex/de-multiplex (MUX/DEMUX) filtering parameters. © 2007 Springer Science+Business Media, LLC.
Resumo:
In this paper, we demonstrate the possibility of reaching a quasi-stable nonlinear transmission regime with carrier pulses of 12.5 ps width in multi-channel 40 Gbit/s systems. The quasi-stable pulses that are presented in this work for the first time are not dispersion-managed solitons, and are indeed supported by a large normal span average dispersion and misbalanced optical amplification, and representing a new type of nonlinear carrier.
Gain switched multi-carrier transmitter and pilot tone based receiver for long reach access networks
Resumo:
A novel and cost effective long reach PON downlink scenario is proposed employing a multi-carrier transmitter and pilot tone aided direct detection at the receiver. Error free performance with QPSK and 50km transmission is presented. © 2012 OSA.
Resumo:
We report for the first time an ultra-stable optical-carrier dissemination technique for transmission over a 20km unidirectional fibre link. The optical-linewidth of the recovered carrier matches closely that of the original carrier. © 2014 OSA.
Resumo:
The performance of a 112Gbit/s dual-carrier DP-16-QAM channel in various WDM configurations is characterized. Variations of the dispersion map, ROADM count and system length are experimentally evaluated and compared with numerical simulation. © 2012 OSA.
Resumo:
The authors present the impact of asymmetric filtering of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 67% (carrier suppressed return to zero)-differential phase shift keying systems. The performance is examined (in an amplified spontaneous emission (ASE) noise-limited regime and in the presence of chromatic dispersion) when offsetting the filter at the receiver by substantial amounts via balanced, constructive and destructive single-ended detections. It is found that with a slight offset (vestigial side band) or an offset of almost half of the modulation frequency (single-side band), there is a significant improvement in the calculated 'Q'. © The Institution of Engineering and Technology 2013.
Resumo:
We present a performance evaluation of a non-conventional approach to implement phase noise tolerant optical systems with multilevel modulation formats. The performance of normalized Viterbi-Viterbi carrier phase estimation (V-V CPE) is investigated in detail for circular m-level quadrature amplitude modulation (C-mQAM) signals. The intrinsic property of C-mQAM constellation points with a uniform phase separation allows a straightforward employment of V-V CPE without the need to adapt constellation. Compared with conventional feed-forward CPE for square QAM signals, the simulated results show an enhanced tolerance of linewidth symbol duration product (ΔvTs) at a low sensitivity penalty by using feed-forward CPE structure with C-mQAM. This scheme can be easily upgraded to higher order modulations without inducing considerable complexity.
Resumo:
Visible light communications is a technology with enormous potential for a wide range of applications within next generation transmission and broadcasting technologies. VLC offers simultaneous illumination and data communications by intensity modulating the optical power emitted by LEDs operating in the visible range of the electromagnetic spectrum (~370-780 nm). The major challenge in VLC systems to date has been in improving transmission speeds, considering the low bandwidths available with commercial LED devices. Thus, to improve the spectral usage, the research community has increasingly turned to advanced modulation formats such as orthogonal frequency-division multiplexing. In this article we introduce a new modulation scheme into the VLC domain; multiband carrier-less amplitude and phase modulation (m-CAP) and describe in detail its performance within the context of bandlimited systems.
Resumo:
A novel multichannel carrier-suppressed return-to-zero (CSRZ) to non-return-to-zero (NRZ) format conversion scheme based on a single custom-designed fiber Bragg grating (FBG) with comb spectra is proposed. The spectral response of each channel is designed according to the algebraic difference between the CSRZ and NRZ spectra outlines. The tailored group delays are introduced to minimize the maximum refractive index modulation. Numerical results show that four-channel 200-GHz-spaced CSRZ signals at 40 Gbits/s can be converted into NRZ signals with high Q-factor and wide-range robustness. It is shown that our proposed FBG is robust to deviations of bandwidth and central wavelength detuning. Another important merit of this scheme is that the pattern effects are efficiently reduced owing to the well-designed spectra response.