5 resultados para Carbon isotopes, Salt Ranges, Kashmir, Himalaya, Nepal, rifting, sequence stratigraphy

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the effects of salt (sodium iodide) on pristine carbon nanotube (CNT) dispersions in an organic solvent, N-methyl-2-pyrrolidone (NMP). We investigate the molecular-scale mechanisms of ion interactions with the nanotube surface and we show how the microscopic ion-surface interactions affect the stability of CNT dispersions in NMP. In our study we use a combination of fully atomistic Molecular Dynamics simulations of sodium and iodide ions at the CNT-NMP interface with direct experiments on the CNT dispersions. In the experiments we analyze the effects of salt on the stability of the dispersions by photoluminescence (PL) and optical absorption spectroscopy of the samples as well as by visual inspection. By fully atomistic Molecular Dynamics simulations we investigate the molecular-scale mechanisms of sodium and iodide ion interactions with the nanotube surface. Our simulations reveal that both ions are depleted from the CNT surface in the CNT-NMP dispersions mainly due to the two reasons: (1) there is a high energy penalty for the ion partial desolvation at the CNT surface; (2) NMP molecules form a dense solvation layer at the CNT surface that prevents ions to come close to the CNT surface. As a result, an increase of the salt concentration increases the "osmotic" stress in the CNT-NMP system and, thus, decreases the stability of the CNT dispersions in NMP. Direct experiments confirm the simulation results: addition of NaI salt into the NMP dispersions of pristine CNTs leads to precipitation of CNTs (bundle formation) even at very small salt concentration (∼10 -3 mol L -1). In line with the simulation predictions, the effect increases with the increase of the salt concentration. Overall, our results show that dissolved salt ions have strong effects on the stability of CNT dispersions. Therefore, it is possible to stimulate the bundle formation in the CNT-NMP dispersions and regulate the overall concentration of nanotubes in the dispersions by changing the NaI concentration in the solvent. © 2012 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved. © 2013 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved. © 2013 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanomaterials are an active frontier of research in current nanotechnology. Single wall Carbon Nanotube (SWNT) is a unique material which has already found several applications in photonics, electronics, sensors and drug delivery. This thesis presents a summary of the author’s research on functionalisation of SWNTs, a study of their optical properties, and potential for an application in laser physics. The first significant result is a breakthrough in controlling the size of SWNT bundles by varying the salt concentrations in N-methyl 2-pyrrolidone (NMP) through a salting out effect. The addition of Sodium iodide leads to self-assembly of CNTs into recognizable bundles. Furthermore, a stable dispersion can be made via addition polyvinylpyrrolidone (PVP) polymer to SWNTs-NMP dispersion, which indicates a promising direction for SWNT bundle engineering in organic solvents. The second set of experiments are concerned with enhancement of photoluminescence (PL), through the formation of novel macromolecular complexes of SWNTs with polymethine dyes with emission from enhanced nanotubes in the range of dye excitation. The effect appears to originate from exciton energy transfer within the solution. Thirdly, SWNT base-saturable absorbers (SA) were developed and applied to mode locking of fibre lasers. SWNT-based SAs were applied in both composite and liquid dispersion forms and achieved stable ultrashort generation at 1000nm, 1550nm, and 1800 nm for Ytterbium, Erbium and Thulium-doped fibre laser respectively. The work presented here demonstrates several innovative approaches for development of rapid functionalised SWNT-based dispersions and composites with potential for application in various photonic devices at low cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigate salt effects on bundle formation of carbon nanotubes (CNTs) dispersed in an organic solvent, N-methyl-2-pyrrolidone (NMP). Addition of NaI salt leads to self-assembly of CNTs into well-recognizable bundles. It is possible to control the size of the CNT bundles by varying the salt concentration. © the Owner Societies 2011.