13 resultados para Carbon and low-alloy steels

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermochemical treatment namely carburising on the fatigue behaviour of one carbon and two alloy steels has been studied in rotating and unidirectional bending. The effect of carbon profile on the unidirect¬ional bending fatigue strength of 63SA14 was assessed, and it was found that single stage carburising with a surface carbon content of 0.8% has resulted in a higher fatigue strength than other types of carbon profiles. Residual stresses and other metallurgical variables arising from different carbon profiles, were also considered. The highest compressive stresses h~e resulted from boost-diffuse-carburising. On the other hand surface decarburisation was associated with tensile residual stresses and a reduced fatigue strength. Retained austenite was found to be detrimental in unidirectional bending fatigue; however its presence in carburised 83SAIS did not seem to influence the rotating bending fatigue strength. Carbide particles in globular and/or intergranular form were detrimental to compressive residual stresses; the unidirectional bending fatigue strength is markedly lowered. The highest fatigue strength was accomplished by vacuum carburising. The absence of internal oxidation was the key factor in the increased fatigue strength; the presence of uniformly distributed fine carbide particles did not upset the superior fatigue strength of vacuum carburised pieces. The effect of mean stress on the fatigue strength of carburised 63SA14 was studied. Increasing the mean stress as would be expected resulted in a decreased fatigue strength. Carburisation showed its advantages at low mean stress, but at high mean stress it offers little advantage over the uncarburised hardened conditions. Notch effect was also studied in unidirectional bending of carburised 080MlS. The general trend showed that the fatigue strength decreases with increasing the stress concentration factor. But different carburising conditions have different effect on notch sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general investigation was performed, in an industrial environment, of the major types of defect specific to investment castings in steel. As a result of this work three types of metallurgical defect were selected for further study. In the first of these, defects in austenitic stainless steel castings were found to result from deoxidation by-products. As a result of metallographic investigation and the statistical analysis of experimental data, evidence was found to support the hypothesis that the other two classes of defects - in martensite stainless and low alloy steels -both resulted from internal or grain boundary oxidation of the chromium alloy constituent This was often found to be followed by reaction between the metal oxides and the ceramic mould material. On the basis of this study, proposals are made for a more fundamental investigation of the mechanisms involved and interim suggestions are given for methods of ameliorating the effect in an industrial situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pin on disc wear machines were used to study the boundary lubricated friction and wear of AISI 52100 steel sliding partners. Boundary conditions were obtained by using speed and load combinations which resulted in friction coefficients in excess of 0.1. Lubrication was achieved using zero, 15 and 1000 ppm concentrations of an organic dimeric acid additive in a hydrocarbon base stock. Experiments were performed for sliding speeds of 0.2, 0.35 and 0.5 m/s for a range of loads up to 220 N. Wear rate, frictional force and pin temperature were continually monitored throughout tests and where possible complementary methods of measurement were used to improve accuracy. A number of analytical techniques were used to examine wear surfaces, debris and lubricants, namely: Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), optical microscopy, Back scattered Electron Detection (BSED) and several metallographic techniques. Friction forces and wear rates were found to vary linearly with load for any given combination of speed and additive concentration. The additive itself was found to act as a surface oxidation inhibitor and as a lubricity enhancer, particularly in the case of the higher (1000 ppm) concentration. Wear was found to be due to a mild oxidational mechanism at low additive concentrations and a more severe metallic mechanism at higher concentrations with evidence of metallic delamination in the latter case. Scuffing loads were found to increase with increasing additive concentration and decrease with increasing speed as would be predicted by classical models of additive behaviour as an organo-metallic soap film. Heat flow considerations tended to suggest that surface temperature was not the overriding controlling factor in oxidational wear and a model is proposed which suggests oxygen concentration in the lubricant is the controlling factor in oxide growth and wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of plain carbon, carbon-manganese and low alloy cast steels were tested in order to determine their various fracture toughness values under elastic and elastic-plastic conditions. The main fracture toughness parameters which are considered are (1) Linear Elastic Fracture Mechanics (LEFM), (2) the J-Contour Integral, and (3) Crack Opening Displacement (COD). Results are obtained from fracture toughness specimens of various dimensions and the relevance of the validity criteria to cast steels is considered in some detail. In addition, the effect of casting position on specimen toughness values was noted. Valid KIC results according to LEFM, were obtained for three of the eight cast steels tested. Although KIC values from LEFM were not obtained from the remaining five steels, critical COD and J-integral values were determined. It is postulated that these values and particularly the critical J values can be used, with confidence for material selection or in defect tolerance calculations using these steels. Toughness values were found to vary with casting position in several of the steels tested and the possible reasons for such variations are discussed in the Thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrocarbons are the most common form of energy used to date. The activities involving exploration and exploitation of large oil and gas fields are constantly in operation and have extended to such hostile environments as the North Sea. This enforces much greater demands on the materials which are used, and the need for enhancing the endurance of the existing ones which must continue parallel to the explorations. Due to their ease in fabrication, relatively high mechanical properties and low costs, steels are the most widely favoured material for the construction of offshore platforms. The most critical part of an offshore structure prone to failure are the welded nodal joints, particulary those which are used within the vicinity of the splash zones. This is an area of high complex stress concentrations, varying mechanical and metallurgical properties in addition to severe North Sea environmental conditions. The main are of this work has been concerned with the durability studies of this type of steel, based on the concept of the worst case analysis, consisting of combinations of welds of varying qualities, various degrees of stress concentrations and the environmental conditions of stress corrosion and hydrogen embrittlement. The experiments have been designed to reveal significance of defects as sites of crack initiation in the welded steels and the extent to which stress corrosion and hydrogen embrittlement will limit their durability. This has been done for various heat treatments and in some experiments deformation has been forced through the welded zone of the specimens to reveal the mechanical properties of the welds themselves to provide data for finite element simulations. A comparison of the results of these simulations with the actual deformation and fracture behaviour has been done to reveal the extent to which both mechanical and metallurgical factors control behaviour of the steels in the hostile environments of high stress, corrosion, and hydrogen embrittlement at their surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection is a major clinical problem associated with the use of intravenous catheters.The efficacy of a direct electric current (10µA, 9V) via electrode-conducting carbon impregnated catheters to prevent colonisation of catheters by micro-organisms was investigated. The range of organisms susceptible to 10µA was determined by a zone of inhibition test. The catheters acting as the anode and the cathode were inserted into a nutrient agar plate inoculated with a lawn of bacteria. There was no zone of inhibition observed around the anode. Organisms susceptible to 10µA at the cathode were Staphylococcus aureus (2 strains), Staphylococcus epidermidis (5 strains), Escherichia coli and Klebsiella pneumoniae (2 strains each), and one strain of the following micro-organisms: Staphylococcus hominis, Proteus mirabilis, Pseudomonas aeruginosa and Candida albicans. The zones ranged from 6 to 16 mm in diameter according to the organisms under test. The zone size was proportional to the amperage (10 - 100 µA) and the number of organisms on the plate. Ten µA did not prevent adhesion of staphylococci to the cathode nor did it affect their growth in nutrient broth. However, it was bactericidal to adherent bacteria on the cathodal catheter and significantly reduced the number of bacteria on the catheter after 4 to 24 h application of electricity. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated.The mechanisms of the bactericidal activity associated with the cathode were investigated with S. epidermidis and S. aureus. The inhibition zone was greatly reduced in the presence of catalase. There was no zone around the cathode when the test was carried out under anaerobic conditions. Hydrogen peroxide was produced at the cathode surface under aerobic conditions, but not in the absence of oxygen. A salt-bridge apparatus was used to demonstrate further that hydrogen peroxide was produced at the cathode, and chlorine at the anode. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated. Antibacterial activity was reduced under anaerobic conditions, which is compatible with the role of hydrogen peroxide as a primary bactericidal agent of electricity associated with the cathode. A reduction in chloride ions did not significantly reduce the antibacterial activity suggesting chlorine plays only a minor role in the bactericidal activity against organisms attached to anodal electrode surfaces. The bactericidal activity of electric current associated with the cathode and H202 was greatly reduced in the presence of 50 μM to 0.5 mM magnesium ions in the test menstrum. Ten μA applied via the catheters did not prevent the initial biofilm growth by the adherent bacteria but reduced the number of bacteria in the biofilm by 2 log order aiter 24 h. The results suggested that 10 μA may prevent the colonisation of catheters by both the extra~ and intra-luminal routes. The localised production of hydrogen peroxide and chlorine and the intrinsic activity due to electric current may offer a useful method for the eradication of bacteria from catheter surfaces.