9 resultados para Carboline, Cycloaddition, Ynamide, Rhodium
em Aston University Research Archive
Resumo:
Intercalation of an in situ prepared [Rh(OH)6]3- complex into an anion exchangeable Ni-Zn layered hydroxy double salt (Rh/NiZn) was demonstrated. The resulting Rh/NiZn effectively catalyzed the 1,4-addition of diverse enones and phenylboronic acids to their corresponding β-substituted carbonyl compounds. In the case of 2-cyclohexen-1-one and phenylboronic acid, a turnover frequency (TOF) of 920 h-1 based on Rh was achieved. The [Rh(OH)6]3- complex maintained its original monomeric trivalent state within the NiZn interlayer following catalysis, attributable to a strong electrostatic interaction between the NiZn host and anionic Rh(III) complex.
Resumo:
[Rh(OH)6]3− intercalated Ni–Zn mixed basic salt (Rh/NiZn) acts as an efficient catalyst for the hydrophenylation of internal alkynes with arylboronic acids under mild conditions. The turnover number per Rh site approached 740 in the reaction between 4-octyne and phenylboronic acid. The catalytic monomeric Rh(III) complex is stabilised within the NiZn interlayers, attributable to a strong electrostatic interaction, promoting its re-use.
Resumo:
p-Conjugated block copolymers have been prepared from terminal azide functionalized polystyrenes (PS) and alkyne functionalized poly(3- hexylthiophene)s (P3HT) via a copper(I) catalyzed Huisgen [3 + 2] dipolar cycloaddition reaction. The functionalized a-azido-PS homopolymer was prepared by atom transfer radical polymerization from a specifically designed initiator bearing the azide function, whereas ?-ethynyl-P3HT and a,?-pentynyl-P3HT were synthesized by a modified Grignard metathesis polymerization using alkynyl Grignard derivatives. The electronic environment of the alkynyl end groups was shown to be decisive in determining triazole ring formation.
Resumo:
A range of well-defined hydrophilic methacrylic macromonomers has been synthesized by the judicious combination of atom transfer radical polymerization (ATRP) and copper-catalyzed 1,3-dipolar cycloaddition (azide-alkyne click chemistry). An azido a-functionalized ATRP initiator was used to produce well-defined homopolymers with terminal azide functionality via ATRP in protic media at 20 °C, with generally good control being achieved over both target molecular weight and final polydispersity (Mw/Mn = 1.10-1.35). Suitable methacrylic monomers include 2-aminoethyl methacrylate hydrochloride, 2-(diethylamino)ethyl methacrylate, 2-(dimethylamino)ethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-(methacryloyloxy)ethyl phosphorylcholine, glycerol monomethacrylate, potassium 3-sulfopropyl methacrylate, and quaternized 2-(dimethylamino)ethyl methacrylate. These homopolymer precursors were then efficiently clicked using either propargyl methacrylate or propargyl acrylate to yield near-monodisperse (meth)acrylate-capped macromonomers with either cationic, anionic, nonionic, or zwitterionic character. Moreover, this generic route to well-defined hydrophilic macromonomers is also suitable for “one-pot” syntheses, as exemplified for 2-hydroxyethyl methacrylate and glycerol monomethacrylate-based macromonomers.
Resumo:
The aim of this study was to prepare a ferromagnetic polymer using the design elements of molecular magnets. This involved the preparation of co-polyradicals of phenylacetylenes bearing nitronyl nitroxides and nitro/cyano groups. The magnetic properties of the materials were determined using a SQUID magnetometer. A novel rhodium catalyst, Rh(NBD)(NH3)Cl, was prepared in order to obtain good yields of polymerisation. A wide range of substituted phenylacetylenes were first homopolymerised in order to assess the efficiency of the catalyst. Yields were generally high, between 75% and 98%, and the time of polymerisation was short (one hour). SEC analysis revealed that the Mw of the polymers were in the range of 200,000 and 250,000. The discovery that phenylboronic acid acts a co-catalyst for the polymerisation served to increase the yields by 10% to 20% but the Mw of the polymers was reduced to approximately 100,000. Co-polyradicals were prepared in good to excellent yield using the new catalyst. The magnetic properties in the temperature range of 300K to 1.8K were investigated by SQUID, which revealed a spin glass system, antiferromagnets and possible dipolar magnets. Short-range ferromagnetic interactions between 300K and 100K were found in a co-polyradical containing nitronyl nitroxide and cyano substituted monomers. The magnetic properties were dependent upon both the type of monomers utilised and the ratio between them. The effects of ring substituents on the terminal alkyne have been studied by carbon-13 NMR. There was no correlation however, between the chemical shift of terminal alkyne and the polymerisability of the monomer.
Resumo:
Several copolymers of linear polystyrene were prepared for evaluation as soluble polymeric supports for organic synthesis. These polymers were utilized for the synthesis of ?2-isoxazoline compounds. The target compounds were synthesized via 1,3-dipolar cycloaddition reactions between polymer bound alkenes and nitrile oxides generated in situ from their corresponding aldoximes. The cleaved ?2-isoxazoline compounds were tested for biological activity against Mycobacterium fortuitum. To compare the success of these linear polystyrene copolymers, some of the ?2-isoxazoline compounds synthesized on soluble polymeric supports were also prepared via traditional crosslinked polymer supports. The polymer-bound ?2-isoxazolines were also tested for antimicrobial activity. In addition attempts were made to prepare polymers containing the ?2-isoxazolines but anchored by non-hydrolysable bonds. Although the copolymers of polystyrene gave good loading capacity in mmol/g, and being soluble in chlorinated solvents it was possible to monitor the reactions by 1H NMR spectroscopy, the cleavage of the polymer bound products proved to be quite troublesome. Product purification was not as straightforward as it was anticipated. Isolation of the cleaved target compounds proved to be time consuming and laborious when compared to the traditional organic synthesis and solid phase organic synthesis (SPOS). Polymer-bound ?2-isoxazolines close to the polymer backbone exhibited some biological activity against Staphylococcus aureus. Polymers with substitution at the para-position of the aryl substituent at position 3 of isoxazoline ring showed antimicrobial activity.
Resumo:
The Introduction gives a brief resume' of the biologically important aspects of 5 -aminoimidazole -4 -carbozamide (1) and explores., in-depth, the synthetic routes to this imidazole. All documented reactions of 5 -aninoimidanole-4 -carboxamide are reviewed in detail, with particular emphasis on the preparation and subsequent coupling reactions of 5 –diazo-imidazole-4 -carboxamide (6). A series of thirteen novel amide 5-amino-2-arylazoimidazole-4-carboxamide derivatives (117-129) were prepared by the coupling of aryldiazonium salts with 5-aminoimidazole-4-carboxamide. Chemical modification of these azo-dyes resulted in the preparation of eight previously unknown acyl derivatives (136-143) Interaction of 5-amino-2-arylazoimidazole-4-carboxides with ethyl formate in sodium ethoxide effected pyrimidine ring closure to the novel 8-arylazohypoxanthines (144 and 145). Several reductive techniques were employed in an effort to obtain the elusive 2,5-diaminoimidazole-4-carboxamide (71),a candidate chemotherapeutic agent, from the arylazoiridazoles. No success can be reported although 5-amino-2-(3-aminoindazol-2-yl) imidazole-4-carboxamide (151) was isolated due to a partial reduction and intramolecular cyclisation of 5-amino72-(2-cyanaphenylazo)imidazole-4-carboxamide (122) .Further possible synthetic approaches to the diaminoimidazole are discussed in Chapter 4. An interesting degradation of a known unstable nitrohydrazone is described in Chapter 5.This resulted in formation of 1, 1-bis(pyrazol--3-ylazo)-1-nitroethane (164) instead of the expected cyclisation to a bicyclic tetrazine N-oxide. An improved preparation of 5-diazoinidazole-4-carboxamide has been achieved, and the diazo-azole formed cycloadducts with isocyanates to yield the hitherto unknown imidazo[5,1-d][1,2,3,5]tetrazin-7(6H)-ones. Eleven derivatives (167-177) of this new ring-system were prepared and characterised. Chemical and spectroscopic investigation showed this ring-system to be unstable under certain conditions, and a comparative study of stability within the group has been made. "Retro-cycloaddition" under protic and photolytic conditions was an unexpected property of 6-substituted imidazo[5,1-d][1,2,3,5]tetrazin--7(0)-ones.Selected examples of the imidazotetrazinone ring-system were tested for antitumour activity. The results of biological evaluation are given in Chapter 7, and have culminated in a Patent application by the collaborating body, May and Baker Ltd. One compound,3-carbamoyl-6-(2-chloro-ethyl)imidazo[5,1-d][1,2,3,5jtetrazin-7(6H)-one (175),shows striking anti-tumour activity in rodent test systems.
Resumo:
Robust, bifunctional catalysts comprising Rh(CO)(Xantphos) exchanged phosphotungstic acids of general formulas [Rh(CO)(Xantphos)]+n[H3–nPW12O40]n− have been synthesized over silica supports which exhibit tunable activity and selectivity toward direct vapor phase methanol carbonylation. The optimal Rh:acid ratio = 0.5, with higher rhodium concentrations increasing the selectivity to methyl acetate over dimethyl ether at the expense of lower acidity and poor activity. On-stream deactivation above 200 °C reflects Rh decomplexation and reduction to Rh metal, in conjunction with catalyst dehydration and loss of solid acidity because of undesired methyl acetate hydrolysis, but can be alleviated by water addition and lower temperature operation.