5 resultados para Caratheodori Class Function
em Aston University Research Archive
Resumo:
In this work the solution of a class of capital investment problems is considered within the framework of mathematical programming. Upon the basis of the net present value criterion, the problems in question are mainly characterized by the fact that the cost of capital is defined as a non-decreasing function of the investment requirements. Capital rationing and some cases of technological dependence are also included, this approach leading to zero-one non-linear programming problems, for which specifically designed solution procedures supported by a general branch and bound development are presented. In the context of both this development and the relevant mathematical properties of the previously mentioned zero-one programs, a generalized zero-one model is also discussed. Finally,a variant of the scheme, connected with the search sequencing of optimal solutions, is presented as an alternative in which reduced storage limitations are encountered.
Resumo:
The fossil arthropod Class Trilobita is characterised by the possession of a highly mineralised dorsal exoskeleton with an incurved marginal flange (doublure). This cuticle is usually the only part of the organism to be preserved. Despite the common occurrence of trilobites in Palaeozoic sediments, the original exoskeletal mineralogy has not been determined previously. Petrographic data involving over seventy trilobite species, ranging in age from Cambrian to Devonian, together with atomic absorption and stable isotope analyses, indicate a primary low-magnesian calcite composition. Trilobite cuticles exhibit a variety of preservational textures which are related to the different diagenetic realms through which they have passed. A greater knowledge of post-depositional processes and the specific features they produce, has enabled post-mortem artefacts to be distinguished from primary cuticular microstructures. Alterations of the cuticle can either enhance or destroy primary features, and their effects are best observed in thin-sections, both under transmitted light and cathodoluminescence. Well-preserved trilobites often retain primary microstructures such as laminations, canals, and tubercles. These have been examined in stained thin-sections and by scanning electron microscopy, from as wide a range of trilobites as possible. Construction of sensory field maps has shown that although the basic organisation of the exoskeleton is the same in all trilobites, the types of microstructures found, and their distribution is species-specific. The composition, microstructure, and architecture of the trilobite exoskeleton have also been studied from a biomechanical viewpoint. Total cuticle thickness, and the relative proportions of the different layers, together with the overall architecture all affected the mechanical properties of the exoskeleton.
Resumo:
OBJECTIVES: To determine whether the use of medications with possible and definite anticholinergic activity increases the risk of cognitive impairment and mortality in older people and whether risk is cumulative. DESIGN: A 2-year longitudinal study of participants enrolled in the Medical Research Council Cognitive Function and Ageing Study between 1991 and 1993. SETTING: Community-dwelling and institutionalized participants. PARTICIPANTS: Thirteen thousand four participants aged 65 and older. MEASUREMENTS: Baseline use of possible or definite anticholinergics determined according to the Anticholinergic Cognitive Burden Scale and cognition determined using the Mini-Mental State Examination (MMSE). The main outcome measure was decline in the MMSE score at 2 years. RESULTS: At baseline, 47% of the population used a medication with possible anticholinergic properties, and 4% used a drug with definite anticholinergic properties. After adjusting for age, sex, educational level, social class, number of nonanticholinergic medications, number of comorbid health conditions, and cognitive performance at baseline, use of medication with definite anticholinergic effects was associated with a 0.33-point greater decline in MMSE score (95% confidence interval (CI)=0.03–0.64, P=.03) than not taking anticholinergics, whereas the use of possible anticholinergics at baseline was not associated with further decline (0.02, 95% CI=-0.14–0.11, P=.79). Two-year mortality was greater for those taking definite (OR=1.68; 95% CI=1.30–2.16; P<.001) and possible (OR=1.56; 95% CI=1.36–1.79; P<.001) anticholinergics. CONCLUSION: The use of medications with anticholinergic activity increases the cumulative risk of cognitive impairment and mortality.
Resumo:
Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR structural templates is difficult due to lack of homology. The plant GPCR, GCR1, has homology to both class A and class B GPCRs. We have used this to generate a class A-class B alignment, and by incorporating maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg(2.39), His(2.43) and Glu(3.46), which makes a polar lock with T(6.37). These alignments and models provide useful tools for understanding class B GPCR function.
Resumo:
Purpose: RPE lysosomal dysfunction is a major contributor to AMD pathogenesis. Controlled activity of a major class of RPE proteinases, the cathepsins, is crucial in maintaining correct lysosomal function. Advanced glycation end-products (AGEs) accumulate in the Bruch’s membrane (BM) with age, impacting critical RPE functions and in turn, contributing to the development of AMD. The aim of this study was to assess the effect of AGEs on lysosomal function by analysing the expression, processing and activity of the cysteine proteinases cathepsins B, L and S, and the aspartic proteinase cathepsin D. Methods: ARPE-19 cells were cultured on AGE-containing BM mimics (matrigel) for 14 days and compared to untreated substrate. Expression levels and intracellular processing of cathepsins B, D, L and S, were assessed by qPCR and immunoblotting of cell lysates. Lysosomal activity was investigated using multiple activity assays specific to each of the analysed cathepsins. Statistical analysis was performed using the Student’s independent T-test. Results: AGE exposure produced a 36% decrease in cathepsin L activity when compared to non-treated controls (p=0.02, n= 3) although no significant changes were observed in protein expression/processing under these conditions. Both the pro and active forms of cathepsin S decreased by 40% (p=0.04) and 74% (p=0.004), respectively (n=3). In contrast, the active form of the cathepsin D increased by 125% (p=0.005, n= 4). However, no changes were observed in the activity levels of both cathepsins S and D. In addition, cathepsin B expression, processing and activity also remained unaltered following AGE exposure. Conclusions: AGEs accumulation in the extracellular matrix, a phenomenon associated with the natural aging process of the BM, attenuates the expression, intracellular processing and activity of specific lysosomal effectors. Altered enzymatic function may impair important lysosomal processes such as endocytosis, autophagy and phagocytosis of photoreceptor outer segments, each of which may influence the age-related dysfunction of the RPE and subsequently, AMD pathogenesis.