4 resultados para Canopy
em Aston University Research Archive
Resumo:
1) In a beechwood, male shoots of Mercurialis perennis were more frequent than female shoots in canopy openings, while females were more frequent at treebases than in canopy openings. 2) Flowering shoots were more frequent than non-flowering in openings. 3) The pH, moisture and organic content of the soil were similar at treebases and openings. The light climate was similar in both habitats in April but greater in the openings in August. 4) Removal of canopies of Pteridium aquilinum and Rubus fruticosus, above populations of M. perennis, resulted in a greater increase in the numbers of male shoots than of female shoots. 5) These results suggest that male and female plants differ in numbers, or growth, in different woodland microhabitats and that these differences are correlated with the above-ground environment (e.g. light).
Resumo:
Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. was studied using a simple wind tunnel constructed in the field. Individual lobes with terminal soralia were placed in the wind tunnel on the adhesive surface of dust particle collectors. Air currents produced by a fan were directed over the surface of the lobes. The majority of soredia were deposited within 5 cm of the source soralium but some soredia were dispersed to at least 80 cm at a wind speed of 6 m s-1. Variation in wind speed had no statistically significant effect on the total number of soredial clusters deposited averaged over soralia but the mean size of cluster and the distance dispersed were greater at higher wind speeds. The number of soredia deposited was dependent on the orientation of the soralium to the air currents. More soredia were deposited with the soralium facing the fan at a wind speed of 9 m s-1. Moisture in the form of a fine mist reduced substantially the number of soredia deposited at a wind speed of 6 m s-1 but had no effect on the mean number of soredia per cluster or on the mean distance dispersed. The data suggest: (1) that wind dispersal from an individual soralium is influenced by wind speed, the location of the soralium on the thallus and the level of moisture and (2) that air currents directed over the surfaces of thalli located on the upper branches of trees would effectively disperse soredia of H. physodes vertically and horizontally within a tree canopy. © 1994.
Resumo:
To create hydrologically sustainable wetlands, knowledge of the water use requirements of target habitats must be known. Extensive literature reviews highlighted a dearth of water-use data associated with large reedbeds and wet woodland habitats and in response to this field experiments were established. Field experiments to measure the water use rates of large reedbeds [ET(Reed)] were completed at three sites within the UK. Reference Crop Evapotranspiration [ETo] was calculated and mean monthly crop coefficients [Kc(Reed)] were developed. Kc(Reed) was less than 1 during the growing season (March to September), ranging between 0.22 in March and reaching a peak of 0.98 in June. The developed coefficients compare favourably with published data from other large reedbed systems and support the premise that the water use of large reedbeds is lower than that from small/fringe reedbeds. A methodology for determining water use rates from wet woodland habitats (UK NVC Code: W6) is presented, in addition to provisional ET(W6) rates for two sites in the UK. Reference Crop Evapotranspiration [ETo] data was used to develop Kc(W6) values which ranged between 0.89 (LV Lysimeter 1) and 1.64 (CH Lysimeter 2) for the period March to September. The data are comparable with relevant published data and show that the water use rates of wet woodland are higher than most other wetland habitats. Initial observations suggest that water use is related to the habitat’s establishment phase and the age and size of the canopy tree species. A theoretical case study presents crop coefficients associated with wetland habitats and provides an example water budget for the creation of a wetland comprising a mosaic of wetland habitats. The case study shows the critical role that the water use of wetland habitats plays within a water budget.
Resumo:
Decomposition of domestic wastes in an anaerobic environment results in the production of landfill gas. Public concern about landfill disposal and particularly the production of landfill gas has been heightened over the past decade. This has been due in large to the increased quantities of gas being generated as a result of modern disposal techniques, and also to their increasing effect on modern urban developments. In order to avert diasters, effective means of preventing gas migration are required. This, in turn requires accurate detection and monitoring of gas in the subsurface. Point sampling techniques have many drawbacks, and accurate measurement of gas is difficult. Some of the disadvantages of these techniques could be overcome by assessing the impact of gas on biological systems. This research explores the effects of landfill gas on plants, and hence on the spectral response of vegetation canopies. Examination of the landfill gas/vegetation relationship is covered, both by review of the literature and statistical analysis of field data. The work showed that, although vegetation health was related to landfill gas, it was not possible to define a simple correlation. In the landfill environment, contribution from other variables, such as soil characteristics, frequently confused the relationship. Two sites are investigated in detail, the sites contrasting in terms of the data available, site conditions, and the degree of damage to vegetation. Gas migration at the Panshanger site was dominantly upwards, affecting crops being grown on the landfill cap. The injury was expressed as an overall decline in plant health. Discriminant analysis was used to account for the variations in plant health, and hence the differences in spectral response of the crop canopy, using a combination of soil and gas variables. Damage to both woodland and crops at the Ware site was severe, and could be easily related to the presence of gas. Air photographs, aerial video, and airborne thematic mapper data were used to identify damage to vegetation, and relate this to soil type. The utility of different sensors for this type of application is assessed, and possible improvements that could lead to more widespread use are identified. The situations in which remote sensing data could be combined with ground survey are identified. In addition, a possible methodology for integrating the two approaches is suggested.