2 resultados para Calibration measurements

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoindentation has become a common technique for measuring the hardness and elastic-plastic properties of materials, including coatings and thin films. In recent years, different nanoindenter instruments have been commercialised and used for this purpose. Each instrument is equipped with its own analysis software for the derivation of the hardness and reduced Young's modulus from the raw data. These data are mostly analysed through the Oliver and Pharr method. In all cases, the calibration of compliance and area function is mandatory. The present work illustrates and describes a calibration procedure and an approach to raw data analysis carried out for six different nanoindentation instruments through several round-robin experiments. Three different indenters were used, Berkovich, cube corner, spherical, and three standardised reference samples were chosen, hard fused quartz, soft polycarbonate, and sapphire. It was clearly shown that the use of these common procedures consistently limited the hardness and reduced the Young's modulus data spread compared to the same measurements performed using instrument-specific procedures. The following recommendations for nanoindentation calibration must be followed: (a) use only sharp indenters, (b) set an upper cut-off value for the penetration depth below which measurements must be considered unreliable, (c) perform nanoindentation measurements with limited thermal drift, (d) ensure that the load-displacement curves are as smooth as possible, (e) perform stiffness measurements specific to each instrument/indenter couple, (f) use Fq and Sa as calibration reference samples for stiffness and area function determination, (g) use a function, rather than a single value, for the stiffness and (h) adopt a unique protocol and software for raw data analysis in order to limit the data spread related to the instruments (i.e. the level of drift or noise, defects of a given probe) and to make the H and E r data intercomparable. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultrasonic thermometer has been developed for high temperature measurement over a wide temperature range. It is particularly suitable for use in measuring nuclear fuel rod centerline temperatures in advanced liquid metal and high flux nuclear reactors. The thermometer which was designed to determine fuel temperature up to the fuel melting point, utilizes the temperature dependence of the ultrasonic propagation velocity (related to the elastic modulus} in a thin rod sensor as the temperature transducing mechanism. A pulse excitation technique has been used, where the mechanical resonator at the remote end of the acoustic·line is madto vibrate. Its natural frequency is proportional to the ultrasonic velocity in the material. This is measured by the electronic instrumentation and enables a frequency­ temperature or period-temperature calibration to be obtained. A completely digital automatic instrument has been designed, constructed and tested to track the resonance frequency of the temperature sensors. It operates smoothly over a frequency range of about 30%, more than the maximum working range of most probe materials. The control uses the basic property of a resonator that the stored energy decays exponentially at the natural frequency of the resonator.The operation of the electronic system is based on a digital multichannel transmitter that is capable of operating with a predefined number of cycles in the burst. this overcomes a basic defect in the previous deslgn where the analogue time-delayed circuits failed to hold synchronization and hence automatic control could be lost. Development of a particular type of temperature probe, that is small enough to fit into a standard 2 mm reactor tube has made the ultrasonic thermometer a practicable device for measuring fuel temperature. The bulkiness of previous probes has been overcome, the new design consists of a tuning fork, integral with a 1mm line, while maintaining a frequency of no more than 100 kHz. A magnetostrictive rod, acoustically matched to the probe is used to launch and receive the acoustic oscillations. This requires a magnetic bias and the previously used bulky magnets have been replaced by a direct current coil. The probe is supported by terminating the launcher with a short heavy isolating rod which can be secured to the reactor structure. This support, the bias and launching coil and the launcher are made up into a single compact unit. On the material side an extensive study of a wide range of refractory materials identified molybdenum, iridium, rhenium and tungsten as satisfactory for a number of applications but mostly exhibiting to some degree a calibration drift with thermal cycling. When attention was directed to ceramic materials, Sapphire (single crystal alumina) was found to have numerous advantages, particularly in respect of stability of calibration which remained with ±2°C after many cycles to 1800oC. Tungsten and thoriated tungsten (W - 2% Tho2) were also found to be quite satisfactory to 1600oC, the specification for a Euratom application.