6 resultados para Calculated based on geographical coordinates

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. A methodology for noninvasively characterizing the three-dimensional (3-D) shape of the complete human eye is not currently available for research into ocular diseases that have a structural substrate, such as myopia. A novel application of a magnetic resonance imaging (MRI) acquisition and analysis technique is presented that, for the first time, allows the 3-D shape of the eye to be investigated fully. METHODS. The technique involves the acquisition of a T2-weighted MRI, which is optimized to reveal the fluid-filled chambers of the eye. Automatic segmentation and meshing algorithms generate a 3-D surface model, which can be shaded with morphologic parameters such as distance from the posterior corneal pole and deviation from sphericity. Full details of the method are illustrated with data from 14 eyes of seven individuals. The spatial accuracy of the calculated models is demonstrated by comparing the MRI-derived axial lengths with values measured in the same eyes using interferometry. RESULTS. The color-coded eye models showed substantial variation in the absolute size of the 14 eyes. Variations in the sphericity of the eyes were also evident, with some appearing approximately spherical whereas others were clearly oblate and one was slightly prolate. Nasal-temporal asymmetries were noted in some subjects. CONCLUSIONS. The MRI acquisition and analysis technique allows a novel way of examining 3-D ocular shape. The ability to stratify and analyze eye shape, ocular volume, and sphericity will further extend the understanding of which specific biometric parameters predispose emmetropic children subsequently to develop myopia. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of determining the spatial pattern of any histological feature in sections of brain tissue which can be measured quantitatively is described and compared with a previously described method. A measurement of a histological feature such as density, area, amount or load is obtained for a series of contiguous sample fields. The regression coefficient (β) is calculated from the measurements taken in pairs, first in pairs of adjacent samples and then in pairs of samples taken at increasing degrees of separation between them, i.e. separated by 2, 3, 4,..., n units. A plot of β versus the degree of separation between the pairs of sample fields reveals whether the histological feature is distributed randomly, uniformly or in clusters. If the feature is clustered, the analysis determines whether the clusters are randomly or regularly distributed, the mean size of the clusters and the spacing of the clusters. The method is simple to apply and interpret and is illustrated using simulated data and studies of the spatial patterns of blood vessels in the cerebral cortex of normal brain, the degree of vacuolation of the cortex in patients with Creutzfeldt-Jacob disease (CJD) and the characteristic lesions present in Alzheimer's disease (AD). Copyright (C) 2000 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging vehicular comfort applications pose a host of completely new set of requirements such as maintaining end-to-end connectivity, packet routing, and reliable communication for internet access while on the move. One of the biggest challenges is to provide good quality of service (QoS) such as low packet delay while coping with the fast topological changes. In this paper, we propose a clustering algorithm based on minimal path loss ratio (MPLR) which should help in spectrum efficiency and reduce data congestion in the network. The vehicular nodes which experience minimal path loss are selected as the cluster heads. The performance of the MPLR clustering algorithm is calculated by rate of change of cluster heads, average number of clusters and average cluster size. Vehicular traffic models derived from the Traffic Wales data are fed as input to the motorway simulator. A mathematical analysis for the rate of change of cluster head is derived which validates the MPLR algorithm and is compared with the simulated results. The mathematical and simulated results are in good agreement indicating the stability of the algorithm and the accuracy of the simulator. The MPLR system is also compared with V2R system with MPLR system performing better. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging vehicular comfort applications pose a host of completely new set of requirements such as maintaining end-to-end connectivity, packet routing, and reliable communication for internet access while on the move. One of the biggest challenges is to provide good quality of service (QoS) such as low packet delay while coping with the fast topological changes. In this paper, we propose a clustering algorithm based on minimal path loss ratio (MPLR) which should help in spectrum efficiency and reduce data congestion in the network. The vehicular nodes which experience minimal path loss are selected as the cluster heads. The performance of the MPLR clustering algorithm is calculated by rate of change of cluster heads, average number of clusters and average cluster size. Vehicular traffic models derived from the Traffic Wales data are fed as input to the motorway simulator. A mathematical analysis for the rate of change of cluster head is derived which validates the MPLR algorithm and is compared with the simulated results. The mathematical and simulated results are in good agreement indicating the stability of the algorithm and the accuracy of the simulator. The MPLR system is also compared with V2R system with MPLR system performing better. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement and variation control of geometrical Key Characteristics (KCs), such as flatness and gap of joint faces, coaxiality of cabin sections, is the crucial issue in large components assembly from the aerospace industry. Aiming to control geometrical KCs and to attain the best fit of posture, an optimization algorithm based on KCs for large components assembly is proposed. This approach regards the posture best fit, which is a key activity in Measurement Aided Assembly (MAA), as a two-phase optimal problem. In the first phase, the global measurement coordinate system of digital model and shop floor is unified with minimum error based on singular value decomposition, and the current posture of components being assembly is optimally solved in terms of minimum variation of all reference points. In the second phase, the best posture of the movable component is optimally determined by minimizing multiple KCs' variation with the constraints that every KC respectively conforms to its product specification. The optimal models and the process procedures for these two-phase optimal problems based on Particle Swarm Optimization (PSO) are proposed. In each model, every posture to be calculated is modeled as a 6 dimensional particle (three movement and three rotation parameters). Finally, an example that two cabin sections of satellite mainframe structure are being assembled is selected to verify the effectiveness of the proposed approach, models and algorithms. The experiment result shows the approach is promising and will provide a foundation for further study and application. © 2013 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept evaluation at the early phase of product development plays a crucial role in new product development. It determines the direction of the subsequent design activities. However, the evaluation information at this stage mainly comes from experts' judgments, which is subjective and imprecise. How to manage the subjectivity to reduce the evaluation bias is a big challenge in design concept evaluation. This paper proposes a comprehensive evaluation method which combines information entropy theory and rough number. Rough number is first presented to aggregate individual judgments and priorities and to manipulate the vagueness under a group decision-making environment. A rough number based information entropy method is proposed to determine the relative weights of evaluation criteria. The composite performance values based on rough number are then calculated to rank the candidate design concepts. The results from a practical case study on the concept evaluation of an industrial robot design show that the integrated evaluation model can effectively strengthen the objectivity across the decision-making processes.