18 resultados para Calcium phosphate materials
em Aston University Research Archive
Resumo:
Synthetic calcium phosphates, despite their bioactivity, are brittle. Calcium phosphate-mullite composites have been suggested as potential dental and bone replacement materials which exhibit increased toughness. Aluminium, present in mullite, has however been linked to bone demineralisation and neurotoxicity: it is therefore important to characterise the materials fully in order to understand their in vivo behaviour. The present work reports the compositional mapping of the interfacial region of a calcium phosphate-20 wt% mullite biocomposite/soft tissue interface, obtained from the samples implanted into the long bones of healthy rabbits according to standard protocols (ISO-10993) for up to 12 weeks. X-ray micro-fluorescence was used to map simultaneously the distribution of Al, P, Si and Ca across the ceramic-soft tissue interface. A well defined and sharp interface region was present between the ceramic and the surrounding soft tissue for each time period examined. The concentration of Al in the surrounding tissue was found to fall by two orders of magnitude, to the background level, within similar to 35 mu m of the implanted ceramic.
Resumo:
Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass(A (R)) [(CaO)(26.9)(Na2O)(24.4)(SiO2)(46.1)(P2O5)(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass(A (R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass(A (R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass(A (R)) is dominated by a broad amorphous feature around 2.2 A...(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass(A (R)) in SBF a second broad amorphous feature evolves similar to 1.6 A...(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass(A (R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.
Resumo:
An array of different structural probes has been used to define the effect of adding Zn and Ti to a sodium-calcium phosphate glass. X-ray absorption spectroscopy at the Zn K-edge suggests that the Zn atoms occupy mixed (4- and 6-fold) sites within the glass matrix. X-ray diffraction reveals a feature at 2.03 angstrom that develops with the addition of Zn and Ti and is consistent with Zn-O and Ti-O near-neighbour distances. Neutron diffraction is used to resolve two distinct P-O distances and highlights the decrease in P center dot center dot center dot P coordination number from 2.0 to 1.7 as the Ti metal concentration rises, which is attributed to the O/P fraction moving away from the metaphosphate value of 3.0 to 3.1 with the addition of Ti. Other correlations, such as those associated with CaO(x) and NaO(x) polyhedra, remain largely unaffected. These results suggest that the network forming P center dot center dot center dot P correlation is most disrupted, with the disorder parameter rising from 0.07 to 0.10 angstrom with the additional modifiers. Zn appears to be introduced into the network as a direct replacement for Ca and causes no structural variation over the composition range studied.
Resumo:
The structure and thermal properties of yttrium alumino-phosphate glasses, of nominal composition (Y2O3)(0.31-z)(Al2O3)(z)(P2O5)(0.69) with 0 less than or similar to z less than or similar to 0.31, were studied by using a combination of neutron diffraction, Al-27 and P-31 magic angle spinning nuclear magnetic resonance, differential scanning calorimetry and thermal gravimetric analysis methods. The Vickers hardness of the glasses was also measured. The data are compared to those obtained for pseudo-binary Al2O3-P2O5 glasses and the structure of all these materials is rationalized in terms of a generic model for vitreous phosphate materials in which Y3+ and Al3+ act as modifying cations that bind only to the terminal (non-bridging) oxygen atoms of PO4 tetrahedra. The results are used to help elucidate the phenomenon of rare-earth clustering in phosphate glasses which can be reduced by substituting Al3+ ions for rare-earth R3+ ions at fixed modifier content.
Resumo:
Brushite cements differ from apatite-forming compositions by consuming a lot of water in their setting reaction whereas apatite-forming cements consume little or no water at all. Only such cement systems that consume water during setting can theoretically produce near-zero porosity ceramics. This study aimed to produce such a brushite ceramic and investigated whether near elimination of porosity would prevent a burst release profile of incorporated antibiotics that is common to prior calcium phosphate cement delivery matrices. Through adjustment of the powder technological properties of the powder reactants, that is particle size and particle size distribution, and by adjusting citric acid concentration of the liquid phase to 800 mM, a relative porosity of as low as 11% of the brushite cement matrix could be achieved (a 60% reduction compared to previous studies), resulting in a wet unprecompacted compressive strength of 52 MPa (representing a more than 100% increase to previously reported results) with a workable setting time of 4.5 min of the cement paste. Up to 2 wt.% of vancomycin and ciprofloxacin could be incorporated into the cement system without loss of wet compressive strength. It was found that drug release rates could be controlled by the adjustable relative porosity of the cement system and burst release could be minimized and an almost linear release achieved, but the solubility of the antibiotic (vancomycin > ciprofloxacin) appeared also to be a crucial factor.
Resumo:
In this study the effect of structure and amount of polyglactin fibre incorporation into a brushite forming calcium phosphate cement system and the effect of mechanical compaction on the fibre modified system were investigated. In comparison the effect of resorbable polycaprolactone surface coating of cement specimens was investigated. The results showed that, apart from the mechanical properties of the reinforcing material, the structure of the incorporated fibres, regular or random, is crucial for the resulting flexural strength and modulus of elasticity. Fibre reinforcement could also be combined with mechanical compaction of the cement/fibre composite paste leading to a possible 7-fold increase in flexural strength or an almost 5-fold increase in modulus of elasticity. Reinforcement of the tensile surface of cement grafts may ultimately improve strength where required, especially in conjunction with bone fixation devices. © 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Biomimetic hydroxyapatite was synthesized by the controlled release of calcium and phosphate ions from poly(N-isopropylacrylamide-co-acrylic acid) (poly(NIPAAm-co-AA)) nanogels. Mixing nanogels containing calcium chloride (CaCl2 ·2H2O) and nanogels containing sodium hydrogen phosphate (Na2HPO4·2H2O) in simulated body fluid (SBF) at physiological conditions of 37 °C and pH 7.4, biomimetic hydroxyapatite was obtained. By studying separately the loading and controlled release of the salts from the nanogels, adequate conditions were chosen to synthesize the hydroxyapatite: Calcium loaded (Ca-loaded) nanogels (1000 mg/ml; 400:3) and inorganic phosphate loaded (Pi-loaded) nanogels (90 mg/ml; 12:1) in a ratio of 2:1 were placed in SBF solution. The obtained powders characterization showed that a low crystalline and substituted hydroxyapatite similar to bone apatite was formed. Such a strategy could be used in medical and dental procedures to induce rapid inorganic mineral formation from a nanogel-containing biomaterial. © 2012 American Scientific Publishers. All rights reserved.
Resumo:
We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks. © 2014 Optical Society of America.
Resumo:
Epidemiological studies previously identified cis-5,8,11,14,17-eicosapentaenoic acid (EPA) as the biologically active component of fish oil of benefit to the cardiovascular system. Although clinical investigations demonstrated its usefulness in surgical procedures, its mechanism of action still remained unclear. It was shown in this thesis, that EPA partially blocked the contraction of aortic smooth muscle cells to the vasoactive agents KCl and noradrenaline. The latter effect was likely caused by reducing calcium influx through receptor-operated channels, supporting a recent suggestion by Asano et al (1997). Consistently, EPA decreased noradrenaline-induced contractures in aortic tissue, in support of previous reports (Engler, 1992b). The observed effect of EPA on cell contractions to KCl was not simple due to blocking calcium influx through L-type channels, consistent with a previous suggestion by Hallaq et al (1992). Moreover, EPA caused a transient increase in [Ca2+]i in the absence of extracellular calcium. To resolve this it was shown that EPA increased inositol phosphate formation which, it is suggested, caused the release of calcium from an inositol phosphate-dependent internal binding site, possibly that of an intracellular membrane or superficial sarcoplasmic reticulum, producing the transient increase in [Ca2+]i. As it was shown that the cellular contractile filaments were not desensitised to calcium by EPA, it is suggested that the transient increase in [Ca2+]i subsequently blocks further cell contraction to KCl by activating membrane-associated potassium channels. Activation of potassium channels induces the cellular efflux of potassium ions, thereby hyperpolarising the plasma membrane and moving the membrane potential farther from the activation range for calcium channels. This would prevent calcium influx in the longer term and could explain the initial observed effect of EPA to block cell contraction to KCl.
Resumo:
Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 rim at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction.
Resumo:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
Resumo:
We have demonstrated the successful production of titanium phosphate glass microspheres in the size range of ~10-200 µm using an inexpensive, efficient, easily scalable process and assessed their use in bone tissue engineering applications. Glasses of the following compositions were prepared by melt-quench techniques: 0.5P2O5-0.4CaO-(0.1 - x)Na2O-xTiO2, where x = 0.03, 0.05 and 0.07 mol fraction (denoted as Ti3, Ti5 and Ti7 respectively). Several characterization studies such as differential thermal analysis, degradation (performed using a novel time lapse imaging technique) and pH and ion release measurements revealed significant densification of the glass structure with increased incorporation of TiO2 in the glass from 3 to 5 mol.%, although further TiO2 incorporation up to 7 mol.% did not affect the glass structure to the same extent. Cell culture studies performed using MG63 cells over a 7-day period clearly showed the ability of the microspheres to provide a stable surface for cell attachment, growth and proliferation. Taken together, the results confirm that 5 mol.% TiO2 glass microspheres, on account of their relative ease of preparation and favourable biocompatibility, are worthy candidates for use as substrate materials in bone tissue engineering applications.
Resumo:
The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO, 30 mol % CaO) for each of the calcium precursors. When CaCl was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.
Resumo:
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.
Resumo:
Neutron diffraction was used to measure the structure of the phosphate glasses RAl0.30P3.05O9.62, where R denotes Dy or Ho, and RAl0.34P3.20O10.04, where R denotes La or Ce. For each glass, isomorphic structures were assumed and difference function methods were employed to separate, essentially, those correlations involving the rare-earth ion, R3+, from the remainder. The ratio of bridging oxygen, OB, to terminal oxygen, OT, atoms in the PO4 tetrahedra was quantified and in both materials R3+ and Al3+ are found to act as network modifying cations which bind to the OT. The R–OT coordination number is 6.7(1) and 7.5(2) for the Dy/Ho and La/Ce glasses respectively.