4 resultados para Calcium aluminate cement

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brushite cements differ from apatite-forming compositions by consuming a lot of water in their setting reaction whereas apatite-forming cements consume little or no water at all. Only such cement systems that consume water during setting can theoretically produce near-zero porosity ceramics. This study aimed to produce such a brushite ceramic and investigated whether near elimination of porosity would prevent a burst release profile of incorporated antibiotics that is common to prior calcium phosphate cement delivery matrices. Through adjustment of the powder technological properties of the powder reactants, that is particle size and particle size distribution, and by adjusting citric acid concentration of the liquid phase to 800 mM, a relative porosity of as low as 11% of the brushite cement matrix could be achieved (a 60% reduction compared to previous studies), resulting in a wet unprecompacted compressive strength of 52 MPa (representing a more than 100% increase to previously reported results) with a workable setting time of 4.5 min of the cement paste. Up to 2 wt.% of vancomycin and ciprofloxacin could be incorporated into the cement system without loss of wet compressive strength. It was found that drug release rates could be controlled by the adjustable relative porosity of the cement system and burst release could be minimized and an almost linear release achieved, but the solubility of the antibiotic (vancomycin > ciprofloxacin) appeared also to be a crucial factor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study the effect of structure and amount of polyglactin fibre incorporation into a brushite forming calcium phosphate cement system and the effect of mechanical compaction on the fibre modified system were investigated. In comparison the effect of resorbable polycaprolactone surface coating of cement specimens was investigated. The results showed that, apart from the mechanical properties of the reinforcing material, the structure of the incorporated fibres, regular or random, is crucial for the resulting flexural strength and modulus of elasticity. Fibre reinforcement could also be combined with mechanical compaction of the cement/fibre composite paste leading to a possible 7-fold increase in flexural strength or an almost 5-fold increase in modulus of elasticity. Reinforcement of the tensile surface of cement grafts may ultimately improve strength where required, especially in conjunction with bone fixation devices. © 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic substances, particularly polymers, are finding increasing use in modifying the properties of cements and concrete. Although a significant amount of research has been conducted into the modification of the mechanical properties of cements by polymers, little is known about the nature of the interface and interactions taking place between the two phases. This thesis addresses the problem of elucidating such interactions. Relevant literature is reviewed, covering the general use of polymers with cements, the chemistry of cements and polymers, adhesion and known interactions between polymers and both cements and related minerals. Although several polymer systems were studied, two in particular were selected, as being well characterized. These were: - 1) polymethyl methacrylate (PMMA), the polymer derived from methyl methacrylate (MMA), and 2) an amine-cured epoxy resin system. By this approach, a methodology was developed for the examination of other polymer/cement interactions. Experiments were conducted in five main areas:- 1) polymer-cement adhesion and the feasibility of revealing interfacial regions mechanically, 2) chemical reactions between polymers and cements, 3) characterization of cement adhesion surfaces, 4) interactions affecting overall polymerisation rates, and 5) studies of polymer impregnated cements. The following conclusions were reached:- 1) The PMMA/cement interface contains calcium methacrylate as an interfacial reaction product, water being a reactant. Calcium methacrylate is detrimental to the properties of PMMA/cement composites, being highly water-soluble. 2) The pore surface of cement accelerates the polymerisation of MMA, leading to an increased molecular weight compared to polymerisation of pure MMA, minerals in hydrated cement powders having the opposite effect. 3) The investigation of reaction products presents a number of experimental problems, selection of appropriate techniques depending upon the system studied. For the two systems examined in detail, ion chromatography proved particularly useful; DTA, IRS and XPS indicated reactions, though the data was hard to interpret; XRD proving inconclusive. 4) It is impractical to reveal interfacial regions mechanically, but may be accomplished by chemical means.