6 resultados para Calcitonina de salmão
em Aston University Research Archive
Resumo:
The effects of sane anabolic and naturally-occuring sex steroids on intestinal transport of leucine have been studied in rainbow trout (Sallno gairdneri), in vivo (gut perfusion), and in vitro (everted gut sacs or intestinal strips). Administration of 17a-methyltestosterone (Mr) by injection for a prolo03ed period of time, enhanced intestinal transport and accumulation of leucine. 11-ketotestosterone (KT) or MT treatment in vitro, by direct addition to incubation media, elicited significant short-term increases in active transport of leucine, without effecting intestinal accumulation. Luminal administration of Mr in vivo similarly elicited short-term responses, without effecting leucine accumulation in the intestine or other peripheral tissues. However; neither MT nor KT significantly affected intestinal transport of water in trout. Although long term injection of oestradiol (E2) enhanced intestinal transport and accumulation of leucine, E2 treatment in vitro was without effect. Addition of ouabain or 2,4,dinitrophenol in the presence of MT abolished steroid-stimulated leucine transform, in vitro. No significant differences were observed between immature male or female trout with respect to either transport of leucine and water, or intestinal granular cell density. However, 'apparent' Na+ absorption and percentage fold height were higher in females, while total intestinal thickness and enterocyte heights were greater in males. These sex differences were essentially abolished. after gonadectany. It is suggested that the short-term effects of the androgenic steroids might be partly mediated through increased activity of Na+,K+,ATPase, and that steroid-induced growth promotion in fish may,to sane extent, be a consequence of enhanced efficiency of intestinal function.
Resumo:
This thesis considers the factors involved in the determination of egg quality and fecundity in farmed stocks of rainbow trout ( Salmo gairdneri R) • Measurements of egg quality, ie. percentage survivals of eggs and fry, from the production batches of eggs of seven fish farms, showed mean survivals of 70% to eying but levels of only 35% to 4.5g fry (approx. 130 days post-fertilisation). Under optimum conditions survivals may reach 85% suggesting that husbandry methods exert significant influences on egg quality. Chemical analyses of the protein, fat, vitellogenin, ash, amino acids, free fatty acid and mineral levels of eggs of varying quality and from parents of different strains showed compositional differences even between individuals of the same stock. However, none of these differences were correlated with egg quality. Egg size showed similar variations but, again under hatchery conditions there was no correlation with differences in egg quality. The only factor which has been shown to exert a significant influence on egg quality is the time of stripping after ovulation. At 1 0°C eggs should be removed from gravid females within ten days of ovulation to achieve optimum egg and fry survival. Studies of egg production from approximately 10,000 broodstock revealed that total fecundity and egg size increased and relative fecundity decreased with increasing fish size. In general, most fish appeared to produce a constant volume of eggs. This is consistent with a hypothesis that egg size can only be increased by parallel reductions in fecundity. Feeding broodstock at half-ration (0.35% body weight day- 1 ) did not affect egg quality but reduced total fecundity and egg size and increased relative fecundity when compared with eggs produced by fish on full-ration. Comparisons of regressions of total fecundity against fish weight for three strains using ANOCO revealed that one strain was significantly more fecund than two other strains considered. Trout of the same strain maintained on different farms behaved similarly suggesting there was some reproducibility of strain characteristics.
Resumo:
Rainbow trout eggs Salmo gairdneri, Richardson, were incubated under a range of different environmental conditions. Recovery of bacteria from egg surfaces revealed that increased water temperature, slow water flow rates and high egg density all significantly increased egg surface bacterial populations. Live eggs were mainly colonized by Cytophaga sp., pseudomonas fluorescens and Aeromonas hydrophila. In contrast, dead eggs supported considerable numbers of fluorescent Pseudomonas sp. Analysis of potential nutrient sources for bacteria colonizing live egg surfaces revealed that small amounts of amino acids, phosphate and potassium may be lost by incubating eggs. Subsequently these nutrients were shown to be capable of supporting limited bacterial growth and reproduction. Dead eggs `leaked' increased amounts of the above nutrients which in turn supported higher bacterial numbers. In addition, biochemical analysis of eggs revealed amino acids and fatty acids that might be utilized by bacteria colonizing dead egg surfaces. Assessment of adhesion properties of bacteria frequently recovered from egg surfaces revealed high cell surface hydrophobicity as an important factor in successful egg colonization. Analysis of egg mortalities from groups of rainbow trout and brown trout (S.trutta L.) eggs maintained under two different incubation systems revealed that potentially a close correlation existed between egg surface bacterial numbers and mortalities in the egg during incubation. Innoculation of newly-fertilized eggs with bacteria demonstrated that groups of eggs supporting high numbers of P.fluorescens suffered significantly higher mortalities during the early part of their incubation. Exposure of incubating eggs to oxolinic acid, chlortetracycline and chloramphenicol demonstrated that numbers of bacteria on egg surfaces could be significantly reduced. However, as no corresponding increase in egg hatching success was revealed, the treatment of incubating eggs with antibiotics or antimicrobial compounds can not be recommended. In commercial hatcheries bacteria are only likely to be responsible for egg deaths during incubation when environmental conditions are unfavourable. High water temperatures, slow water flow rates and high egg density all lead to increased bacterial number of egg surfaces, reduced water circulation and low levels of dissolved oxygen. Under such circumstances sufficient amounts of dissolved oxygen may not be available to support developing embryos.