14 resultados para Cadeia de markov
em Aston University Research Archive
Resumo:
This paper consides the problem of extracting the relationships between two time series in a non-linear non-stationary environment with Hidden Markov Models (HMMs). We describe an algorithm which is capable of identifying associations between variables. The method is applied both to synthetic data and real data. We show that HMMs are capable of modelling the oil drilling process and that they outperform existing methods.
Resumo:
Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models to identify the lag (or delay) between different variables for such data. Adopting an information-theoretic approach, we develop a procedure for training HMMs to maximise the mutual information (MMI) between delayed time series. The method is used to model the oil drilling process. We show that cross-correlation gives no information and that the MMI approach outperforms maximum likelihood.
Resumo:
An expanding literature exists to suggest that the trading mechanism can influence the volatility of security returns. This study adds to this literature by examining the impact that the introduction of SETS, on the London Stock Exchange, had on the volatility of security returns. Using a Markov switching regime change model security volatility is categorized as being in a regime of either high or low volatility. It is shown that prior to the introduction of SETS securities tended to be in a low volatility regime. At the time SETS was introduced securities moved to a high volatility regime. This suggests that volatility increased when SETS was introduced.
Resumo:
In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.
Resumo:
Conformational transitions in proteins define their biological activity and can be investigated in detail using the Markov state model. The fundamental assumption on the transitions between the states, their Markov property, is critical in this framework. We test this assumption by analyzing the transitions obtained directly from the dynamics of a molecular dynamics simulated peptide valine-proline-alanine-leucine and states defined phenomenologically using clustering in dihedral space. We find that the transitions are Markovian at the time scale of ˜ 50 ps and longer. However, at the time scale of 30–40 ps the dynamics loses its Markov property. Our methodology reveals the mechanism that leads to non-Markov behavior. It also provides a way of regrouping the conformations into new states that now possess the required Markov property of their dynamics.
Resumo:
Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.
Resumo:
In this letter we propose an Markov model for slotted CSMA/CA algorithm working in a non-acknowledgement mode, specified in IEEE 802.15.4 standard. Both saturation throughput and energy consumption are modeled as functions of backoff window size, number of contending devices and frame length. Simulations show that the proposed model can achieve a very high accuracy (less than 1% mismatch) if compared to all existing models (bigger than 10% mismatch).
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.
Resumo:
We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.
Resumo:
A hidden Markov state model has been applied to classical molecular dynamics simulated small peptide in explicit water. The methodology allows increasing the time resolution of the model and describe the dynamics with the precision of 0.3 ps (comparing to 6 ps for the standard methodology). It also permits the investigation of the mechanisms of transitions between the conformational states of the peptide. The detailed description of one of such transitions for the studied molecule is presented. © 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper we develop set of novel Markov Chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient. © 2011 Springer-Verlag.