1 resultado para CUNY-wide membership
em Aston University Research Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Campus - Alm@DL - Università di Bologna (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (76)
- Boston University Digital Common (19)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (43)
- CentAUR: Central Archive University of Reading - UK (38)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (60)
- Cochin University of Science & Technology (CUSAT), India (12)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- CUNY Academic Works (26)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ Winthrop University (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (20)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (9)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (35)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (10)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (22)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (138)
- Queensland University of Technology - ePrints Archive (197)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (10)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Southampton, United Kingdom (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper deals with a very important issue in any knowledge engineering discipline: the accurate representation and modelling of real life data and its processing by human experts. The work is applied to the GRiST Mental Health Risk Screening Tool for assessing risks associated with mental-health problems. The complexity of risk data and the wide variations in clinicians' expert opinions make it difficult to elicit representations of uncertainty that are an accurate and meaningful consensus. It requires integrating each expert's estimation of a continuous distribution of uncertainty across a range of values. This paper describes an algorithm that generates a consensual distribution at the same time as measuring the consistency of inputs. Hence it provides a measure of the confidence in the particular data item's risk contribution at the input stage and can help give an indication of the quality of subsequent risk predictions. © 2010 IEEE.