61 resultados para CROSS-LINKING AGENTS

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen, type I, is a highly abundant natural protein material which has been cross-linked by a variety of methods including chemical agents, physical heating and UV irradiation with the aim of enhancing its physical characteristics such as mechanical strength, thermal stability, resistance to proteolytic breakdown, thus increasing its overall biocompatibility. However, in view of the toxicity of residual cross-linking agents, or impracticability at large scales, it would be more useful if the collagen could be cross-linked by a milder, efficient and more practical means by using enzymes as biological catalysts. We demonstrate that on treating native collagen type I (from bovine skin) with both tissue transglutaminase (TG2; tTG) and microbial transglutaminase (mTG; Streptoverticillium mobaraense) leads to an enhancement in cell attachment, spreading and proliferation of human osteoblasts (HOB) and human foreskin dermal fibroblasts (HFDF) when compared to culture on native collagen. The transglutaminase-treated collagen substrates also showed a greater resistance to cell-mediated endogenous protease degradation than the native collagen. In addition, the HOB cells were shown to differentiate at a faster rate than on native collagen when assessed by measurement of alkaline phosphatase activity and osteopontin expression. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review summarises the functions of the enzyme tissue transglutaminase (TG2) in the extracellular matrix (ECM) both as a matrix stabiliser through its protein cross-linking activity and as an important cell adhesion protein involved in cell survival. The contribution of extracellular TG2 to the pathology of important diseases such as cancer and fibrosis are discussed with a view to the potential importance of TG2 as a therapeutic target. The medical applications of TG2 are further expanded by detailing the use of transglutaminase cross-linking in the development of novel biocompatible biomaterials for use in soft and hard tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial transglutaminase is favoured for use in industry over the mammalian isoform, and hence has been utilized, to great effect, as an applied biocatalyst in many industrial areas including the food and textiles industries. There are currently only a limited number of microbial TGase sources known. A number of organisms have been screened for transglutaminase activity using biochemical assays directed towards TGase catalyzed reactions (amine incorporation and peptide cross-linking assay). Of those organisms screened, TGase was identified in a number of isolates including members of the Bacillus and Streptomyces families. In addition, a protein capable of performing a TGase-like reaction was identified in the organism Pseudomonas putida that was deemed immunologically distinct from previously described TGase isoforms, though further work would be required to purify the protein responsible. The genuses Streptoverticillium and Streptomyces are known to be closely related. A number of micro-organisms relating to Streptomyces mobaraensis (formerly Streptoverticillium mobaraensis) have been identified as harboring a TGase enzyme. The exact biological role of Streptomyces TGase is not well understood, though from work undertaken here it would appear to be involved in cell wall growth. Comparison of the purified Streptomyces TGase proteins showed them to exhibit marginally different characteristics in relation to enzymatic activity and pH dependency upon comparison with Streptomyces mobaraensis TGase. In addition, TGase was identified in the organism Saccharomonospora viridis that was found to be genetically identical to that from S. mobaraensis raising questions about the enzymes dissemination in nature. TGase from S. baldaccii was found to be most diverse with respect to enzymatic characteristics whilst still retaining comparable E(y-glutamyl) lysine bond formation to S. mobaraensis TGase. As such S. baldaccii TGase was cloned into an expression vector enabling mass production of the enzyme thereby providing a viable alternative to S. mobaraensis TGase for many industrial processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Activated factor XIII (FXIIIa), a transglutaminase, introduces fibrin-fibrin and fibrin-inhibitor cross-links, resulting in more mechanically stable clots. The impact of cross-linking on resistance to fibrinolysis has proved challenging to evaluate quantitatively. Methods: We used a whole blood model thrombus system to characterize the role of cross-linking in resistance to fibrinolytic degradation. Model thrombi, which mimic arterial thrombi formed in vivo, were prepared with incorporated fluorescently labeled fibrinogen, in order to allow quantification of fibrinolysis as released fluorescence units per minute. Results: A site-specific inhibitor of transglutaminases, added to blood from normal donors, yielded model thrombi that lysed more easily, either spontaneously or by plasminogen activators. This was observed both in the cell/platelet-rich head and fibrin-rich tail. Model thrombi from an FXIII-deficient patient lysed more quickly than normal thrombi; replacement therapy with FXIII concentrate normalized lysis. In vitro addition of purified FXIII to the patient's preprophylaxis blood, but not to normal control blood, resulted in more stable thrombi, indicating no further efficacy of supraphysiologic FXIII. However, addition of tissue transglutaminase, which is synthesized by endothelial cells, generated thrombi that were more resistant to fibrinolysis; this may stabilize mural thrombi in vivo. Conclusions: Model thrombi formed under flow, even those prepared as plasma 'thrombi', reveal the effect of FXIII on fibrinolysis. Although very low levels of FXIII are known to produce mechanical clot stability, and to achieve ?-dimerization, they appear to be suboptimal in conferring full resistance to fibrinolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transglutaminases (TGs) stabilize proteins by the formation of ε(γ-glutamyl)lysine cross-links. Here, we demonstrate that the cross-linking of collagen I (COL I) by tissue transglutaminase (TG2) causes an alteration in the morphology and rheological properties of the collagen fibers. Human osteoblasts (HOB) attach, spread, proliferate, differentiate and mineralize more rapidly on this cross-linked matrix compared to native collagen. When seeded on cross-linked COL I, HOB are more resistant to the loss of cell spreading by incubation with RGD containing peptides and with α1, α2 and β1 integrin blocking antibodies. Following adhesion on cross-linked collagen, HOB show increased phosphorylation of the focal adhesion kinase, and increased expression of β1 and β3 integrins. Addition of human bone morphogenetic protein to HOB seeded on TG2 cross-linked COL I enhanced the expression of the differentiation marker bone alkaline phosphatase when compared to cross-linked collagen alone. In summary, the use of TG2-modified COL I provides a promising new scaffold for promoting bone healing. © 2014 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which cross-links proteins via e(g-glutamyl)lysine bridges. There is increasing evidence that tTG is involved in wound repair and tissue stabilization, as well as in physiological mechanisms leading to cell death. To investigate the role of this enzyme in tissue wounding leading to loss of Ca2+ homoeostasis, we initially used a model involving electroporation to reproduce cell wounding under controlled conditions. Two cell models were used whereby tTG expression is regulated either by antisense silencing in ECV 304 cells or by using transfected Swiss 3T3 cells in which tTG expression is under the control of the tet regulatory system. Using these cells, loss of Ca2+ homoeostasis following electroporation led to a tTG-dependent formation of highly cross-linked proteinaceous shells from intracellular proteins. Formation of these structures is dependent on elevated intracellular Ca2+, but it is independent of intracellular proteases and is near maximal after only 20min post-wounding. Using labelled primary amines as an indicator of tTG activity within these 'wounded cells', we demonstrate that tTG modifies a wide range of proteins that are present in both the perinuclear and intranuclear spaces. The demonstration of entrapped DNA within these shell structures, which showed limited fragmentation, provides evidence that the high degree of transglutaminase cross-linking results in the prevention of DNA release, which may serve to dampen any subsequent inflammatory response. Comparable observations were shown when monolayers of cells were mechanically wounded by scratching. In this second model of cell wounding, redistribution of tTG activity to the extracellular matrix was also demonstrated, an effect which may serve to stabilize tissues post-trauma, and thus contribute to the maintenance of tissue integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the mechanism by which ethylene thiourea (ETU) cross-links polychloroprene (CR) in combination with zinc oxide (ZnO) was undertaken. This was achieved through an examination of the mechanisms of crosslinking CR with ETU and ZnO separately and in unison. Spectroscopic and physical characterization techniques were employed to probe the cross-linking mechanisms of CRusing other standard rubber accelerators and model compounds with analogous structures and functionalities to ETU. These investigations have resulted in the proposal of a new mechanism by which ETU and ZnO can synergistically cross-link CR, in addition to providing new evidence to support concomitant mechanisms already published for cross-linking CR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microbial transglutaminase (mTGase) is an enzyme that introduces a covalent bond between peptide bound glutamine and lysine residues. Proteins cross-linked in this manner are often more resistant to proteolytic degradation and show increased tensile strength. This study evaluates the effects of mTGase mediated cross-linking of collagen on the cellular morphology, behaviour and viability of murine 3T3 fibroblasts following their seeding into collagen scaffolds. Additionally, cell mediated scaffold contraction, porosity and level of cross-linking of the scaffold has been analysed using image analysis software, scanning electron microscopy (SEM), colorimetric assays, and Fourier transform infrared spectroscopy (FTIR). We demonstrate that the biocompatibility and cellular morphology, when comparing cultures of fibroblasts integrated in mTGase cross-linked collagen scaffolds with the native collagen counterparts, remained unaffected. It has been also elicited that the structural characteristics of collagen have been preserved while introducing enzymatically resistant covalent bonds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigated the effect on the mechanical and physicochemical properties of type II collagen scaffolds after cross-linking with microbial transglutaminase (mTGase). It is intended to develop a collagen-based scaffold to be used for the treatment of degenerated intervertebral discs. By measuring the amount of ε-(γ-glutamyl)lysine isodipeptide formed after cross-linking, it was determined that the optimal enzyme concentration was 0.005% (w/v). From the production of covalent bonds induced by mTGase cross-linking, the degradation resistance of type II collagen scaffolds can be enhanced. Rheological analysis revealed an almost sixfold increase in storage modulus (G') with 0.005% (w/v) mTGase cross-linked scaffolds (1.31 ± 0.03 kPa) compared to controls (0.21 ± 0.01 kPa). There was a significant reduction in the level of cell-mediated contraction of scaffolds with increased mTGase concentrations. Cell proliferation assays showed that mTGase cross-linked scaffolds exhibited similar cytocompatibility properties in comparison to non-cross-linked scaffolds. In summary, cross-linking type II collagen with mTGase imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications. © Mary Ann Liebert, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Isocyanate cross-linked hydroxy terminated polybutadiene is used as a binder for solid rocket propellant. Rocket motors containing this propellant require a storage life of at least 20 years. During storage it has been found that the important rubbery properties of the binder can be lost due to oxidative cross-linking of the polybutadiene chains. This could cause catastrophic failure when the rocket motor is required. At present the bis-hindered phenol Calco 2246 is used as a thermal oxidative stabiliser, but it's performance is only adequate. This has led to the search for a more efficient stabiliser system. To hasten the evaluation of new antioxidant systems the use of dynamic thermal analysis was investigated. Results showed that a tentative relationship existed between predictions by thermal analysis and the long term oven ageing for simple single antioxidant systems. But for more complex systems containing either autosynergistic or mixed antioxidants no relationship was observed suggesting that results for such an "accelerated" technique cannot be used for the purpose of extrapolation for long term performance. This was attributed to the short time and more aggressive condition used (hjgher temperature and oxygen rich atmosphere in thermal analysis) altering the mechanism of action of the antioxidants and not allowing time for co-operative effect of the combined antioxidant system to form. One potential problem for the binder system is the use of an diisocyanate as a cross-linking agent. This reacts with the hydroxyl hydrogen on the polymer as well as other active hydrogens such as those contained in a number of antioxidants, affecting both cross-linking and antioxidant effectiveness. Studies in this work showed that only antioxidants containing amine moieties have a significant affect on binder preparation, with the phenolic antioxidants not reacting. This is due to the greater nucleophilicity of the amines. Investigation of a range of antioxidant systems, including potentially homo, hetero and autosynergistic systems, has highlighted a number of systems which show considerably greater effectiveness than the currently used antioxidant Calco 2246. The only single antioxidant which showed improvement was the partially unhindered phenol y-Tocopherol. Of the mixed systems combinations of the sulphur containing antioxidants e.g. DLTP with higher levels of chain-breaking antioxidants, especially Calco 2246, were the most promising. Also the homosynergistic mix of an aromatic amine and a phenol was seen to be very effective but the results were inconsistent. This inconsistency could be explained by the method of sample preparation used. It was shown that the efficiency of a number of antioxidant.s could be dramatically improved by the use of ultrasound during the mixing stage of preparation. The reason for this increase in performance is unclear but in the case of the homosynergistic amine/phenol mix both more efficient mixing and/or the production of a novel mechanism of action are suggested

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The irnidazotetrazinones are a novel group of anti tumour agents which have demonstrated good activity against a range of murine tumours and human xenografts. They possess a structure activity relationship similar to the anti tumour triazenes, with the chloroethyl (mitozolomide) and methyl (temozolomide) analogues being active antitumour agents, whilst the ethyl (CCRG 82019) and higher homologues are inactive. This thesiS attempts to elucidate the biological mechanisms responsible for the strict structure-activity relationship observed amongst the imidazotetrazinones. Mitozolomide is the only agent chemically capable of cross-linking DNA , which has been suggested to be responsible fo r the cytotoxicity of this group of agents. Only mitozolomide and ternozolornide Exhibit a marked ditferential toxicity towards the 0 -alkylguanine-DNA alkyltransferase deficient GM892A (Mer-) cell line rather than the proficient Raji cell line (Mer+). The rate of uptake of imidazotetrazinones into cells is similar for all three agents in both cell lines, and does not explain the differing sensitivities to these agents. The effect of drug treatment on the incorporation of precursors into macromolecules, and their pool sizes, was examined. Temozolomide administration was found to alter de novo protein synthesis in both GM892A and Raji cells. Flow cytometric analysis revealed that temozolomide and CCRG 82019 block cells in late S/G2/M phase of the cell cycle , similar to that observed with mitozolomide. The extent of reaction of all three drugs with isolated macromolecules and cellular macromolecules was determined, and differences found, with cellular repair processes influencing the number of alkyl lesions remaining bound to macromolecules. The specific bases formed in calf thymus DNA after treatment with either temozolornide and CCRG 82019 was measured, and it was found that the types and relative amounts of lesions formed, differed, as well as the total level of alkylation. Whereas DNA extracted from imidazotetrazinone treated cells is not affected in its ability to support RNA polymerase activity, an effect is observed on the ability to extract DNA polymerase from drug treated cells. This may suggest that the alkylated DNA must be in intact chromatin for the lesion to manifest its effects. Temozolomide and methyl methanesulphonate do got appear to act with a synergistic mode of action. The 0 -position of guanine is suspected to be a critical site for the action of these types of drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 µM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.