32 resultados para CROSS-LINKED MICELLES

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial transglutaminase (mTGase) is an enzyme that introduces a covalent bond between peptide bound glutamine and lysine residues. Proteins cross-linked in this manner are often more resistant to proteolytic degradation and show increased tensile strength. This study evaluates the effects of mTGase mediated cross-linking of collagen on the cellular morphology, behaviour and viability of murine 3T3 fibroblasts following their seeding into collagen scaffolds. Additionally, cell mediated scaffold contraction, porosity and level of cross-linking of the scaffold has been analysed using image analysis software, scanning electron microscopy (SEM), colorimetric assays, and Fourier transform infrared spectroscopy (FTIR). We demonstrate that the biocompatibility and cellular morphology, when comparing cultures of fibroblasts integrated in mTGase cross-linked collagen scaffolds with the native collagen counterparts, remained unaffected. It has been also elicited that the structural characteristics of collagen have been preserved while introducing enzymatically resistant covalent bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect on the mechanical and physicochemical properties of type II collagen scaffolds after cross-linking with microbial transglutaminase (mTGase). It is intended to develop a collagen-based scaffold to be used for the treatment of degenerated intervertebral discs. By measuring the amount of ε-(γ-glutamyl)lysine isodipeptide formed after cross-linking, it was determined that the optimal enzyme concentration was 0.005% (w/v). From the production of covalent bonds induced by mTGase cross-linking, the degradation resistance of type II collagen scaffolds can be enhanced. Rheological analysis revealed an almost sixfold increase in storage modulus (G') with 0.005% (w/v) mTGase cross-linked scaffolds (1.31 ± 0.03 kPa) compared to controls (0.21 ± 0.01 kPa). There was a significant reduction in the level of cell-mediated contraction of scaffolds with increased mTGase concentrations. Cell proliferation assays showed that mTGase cross-linked scaffolds exhibited similar cytocompatibility properties in comparison to non-cross-linked scaffolds. In summary, cross-linking type II collagen with mTGase imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications. © Mary Ann Liebert, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen, type I, is a highly abundant natural protein material which has been cross-linked by a variety of methods including chemical agents, physical heating and UV irradiation with the aim of enhancing its physical characteristics such as mechanical strength, thermal stability, resistance to proteolytic breakdown, thus increasing its overall biocompatibility. However, in view of the toxicity of residual cross-linking agents, or impracticability at large scales, it would be more useful if the collagen could be cross-linked by a milder, efficient and more practical means by using enzymes as biological catalysts. We demonstrate that on treating native collagen type I (from bovine skin) with both tissue transglutaminase (TG2; tTG) and microbial transglutaminase (mTG; Streptoverticillium mobaraense) leads to an enhancement in cell attachment, spreading and proliferation of human osteoblasts (HOB) and human foreskin dermal fibroblasts (HFDF) when compared to culture on native collagen. The transglutaminase-treated collagen substrates also showed a greater resistance to cell-mediated endogenous protease degradation than the native collagen. In addition, the HOB cells were shown to differentiate at a faster rate than on native collagen when assessed by measurement of alkaline phosphatase activity and osteopontin expression. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isocyanate cross-linked hydroxy terminated polybutadiene is used as a binder for solid rocket propellant. Rocket motors containing this propellant require a storage life of at least 20 years. During storage it has been found that the important rubbery properties of the binder can be lost due to oxidative cross-linking of the polybutadiene chains. This could cause catastrophic failure when the rocket motor is required. At present the bis-hindered phenol Calco 2246 is used as a thermal oxidative stabiliser, but it's performance is only adequate. This has led to the search for a more efficient stabiliser system. To hasten the evaluation of new antioxidant systems the use of dynamic thermal analysis was investigated. Results showed that a tentative relationship existed between predictions by thermal analysis and the long term oven ageing for simple single antioxidant systems. But for more complex systems containing either autosynergistic or mixed antioxidants no relationship was observed suggesting that results for such an "accelerated" technique cannot be used for the purpose of extrapolation for long term performance. This was attributed to the short time and more aggressive condition used (hjgher temperature and oxygen rich atmosphere in thermal analysis) altering the mechanism of action of the antioxidants and not allowing time for co-operative effect of the combined antioxidant system to form. One potential problem for the binder system is the use of an diisocyanate as a cross-linking agent. This reacts with the hydroxyl hydrogen on the polymer as well as other active hydrogens such as those contained in a number of antioxidants, affecting both cross-linking and antioxidant effectiveness. Studies in this work showed that only antioxidants containing amine moieties have a significant affect on binder preparation, with the phenolic antioxidants not reacting. This is due to the greater nucleophilicity of the amines. Investigation of a range of antioxidant systems, including potentially homo, hetero and autosynergistic systems, has highlighted a number of systems which show considerably greater effectiveness than the currently used antioxidant Calco 2246. The only single antioxidant which showed improvement was the partially unhindered phenol y-Tocopherol. Of the mixed systems combinations of the sulphur containing antioxidants e.g. DLTP with higher levels of chain-breaking antioxidants, especially Calco 2246, were the most promising. Also the homosynergistic mix of an aromatic amine and a phenol was seen to be very effective but the results were inconsistent. This inconsistency could be explained by the method of sample preparation used. It was shown that the efficiency of a number of antioxidant.s could be dramatically improved by the use of ultrasound during the mixing stage of preparation. The reason for this increase in performance is unclear but in the case of the homosynergistic amine/phenol mix both more efficient mixing and/or the production of a novel mechanism of action are suggested

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stirring of perthiolated β-cyclodextrin in water yields cross-linked hollow capsules ca. 50 nm in diameter, which can be used for encapsulation and controlled release of large molecules as shown using Reichardt's dye. © 2009 The Royal Society of Chemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transglutaminases (TGs) stabilize proteins by the formation of ε(γ-glutamyl)lysine cross-links. Here, we demonstrate that the cross-linking of collagen I (COL I) by tissue transglutaminase (TG2) causes an alteration in the morphology and rheological properties of the collagen fibers. Human osteoblasts (HOB) attach, spread, proliferate, differentiate and mineralize more rapidly on this cross-linked matrix compared to native collagen. When seeded on cross-linked COL I, HOB are more resistant to the loss of cell spreading by incubation with RGD containing peptides and with α1, α2 and β1 integrin blocking antibodies. Following adhesion on cross-linked collagen, HOB show increased phosphorylation of the focal adhesion kinase, and increased expression of β1 and β3 integrins. Addition of human bone morphogenetic protein to HOB seeded on TG2 cross-linked COL I enhanced the expression of the differentiation marker bone alkaline phosphatase when compared to cross-linked collagen alone. In summary, the use of TG2-modified COL I provides a promising new scaffold for promoting bone healing. © 2014 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which cross-links proteins via e(g-glutamyl)lysine bridges. There is increasing evidence that tTG is involved in wound repair and tissue stabilization, as well as in physiological mechanisms leading to cell death. To investigate the role of this enzyme in tissue wounding leading to loss of Ca2+ homoeostasis, we initially used a model involving electroporation to reproduce cell wounding under controlled conditions. Two cell models were used whereby tTG expression is regulated either by antisense silencing in ECV 304 cells or by using transfected Swiss 3T3 cells in which tTG expression is under the control of the tet regulatory system. Using these cells, loss of Ca2+ homoeostasis following electroporation led to a tTG-dependent formation of highly cross-linked proteinaceous shells from intracellular proteins. Formation of these structures is dependent on elevated intracellular Ca2+, but it is independent of intracellular proteases and is near maximal after only 20min post-wounding. Using labelled primary amines as an indicator of tTG activity within these 'wounded cells', we demonstrate that tTG modifies a wide range of proteins that are present in both the perinuclear and intranuclear spaces. The demonstration of entrapped DNA within these shell structures, which showed limited fragmentation, provides evidence that the high degree of transglutaminase cross-linking results in the prevention of DNA release, which may serve to dampen any subsequent inflammatory response. Comparable observations were shown when monolayers of cells were mechanically wounded by scratching. In this second model of cell wounding, redistribution of tTG activity to the extracellular matrix was also demonstrated, an effect which may serve to stabilize tissues post-trauma, and thus contribute to the maintenance of tissue integrity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides, which facilitates cell adhesion, migration and proliferation. In this study, we evaluated the cell adhesion properties of a tailored laminin-332 alpha3 chain tethered to a type I collagen scaffold using microbial transglutaminase (mTGase) by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide A: PPFLMLLKGSTREAQQIVM) or lysine (peptide B: PPFLMLLKGSTRKKKKG). The degree of cross-linking was studied by amino acid analysis following proteolytic digestion and the structural changes in the modified scaffold further investigated using Fourier transform infrared spectroscopy and atomic force microscopy. Fibroblasts were used to evaluate the cellular behaviour of the functionalized collagen scaffold. mTGase supports cell growth but tethering of peptide A and peptide B to the mTGase cross-linked collagen scaffold caused a significant increase in cell proliferation when compared with native and mTGase cross-linked collagen scaffolds. Both peptides enabled cell-spreading, attachment and normal actin cytoskeleton organization with slight increase in the cell proliferation was observed in peptide A when compared with the peptide B and mTGase cross-linked scaffold. An increase in the amount of epsilon(gamma-glutamyl) lysine isopeptide was observed in peptide A conjugated scaffolds when compared with peptide B conjugated scaffolds, mTGase cross-linked scaffold without peptide. Changes in D-spacing were observed in the cross-linked scaffolds with tethered peptides. These results demonstrate that mTGase can play a bifunctional role in both conjugation of the glutamine and lysine containing peptide sequences and also in the cross-linking of the collagen scaffold, thus providing a suitable substrate for cell growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The definitive goal of this research is to develop protein-based scaffolds for use in soft tissue regeneration, particularly in the field of dermal healing. The premise of this investigation was to characterize the mechanical properties of gelatin cross-linked with microbial transglutaminase (mTGase) and to investigate the cytocompatibility of mTGase cross-linked gelatin. Dynamic rheological analysis revealed a significant increase in the storage modulus and thermal stability of gelatin after cross-linking with mTGase. Static, unconfined compression tests showed an increase in Young's modulus of gelatin gels after mTGase cross-linking. A comparable increase in gel strength was observed with 0.03% mTGase and 0.25% glutaraldehyde cross-linked gelatin gels. In vitro studies using 3T3 fibroblasts indicated cytotoxicity at a concentration of 0.05% mTGase after 72 h. However, no significant inhibition of cell proliferation was seen with cells grown on lower concentrations of mTGase cross-linked gelatin substrates. The mechanical improvement and cytocompatibility of mTGase cross-linked gelatin suggests mTGase has potential for use in stabilizing gelatin gels for tissue-engineering applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogels may be described as cross~linked hydrophilic polymers that swell but do not dissolve in water. They have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers. This project is focused on the development of novel hydrogels for keratoprosthesis (KPro). The most commonly used KPro model consists of a tansparent central stem witb a porous peripheral skirt. Clear poly (methyl methacrylate) (PMMA) core material used in the Strampelli KPros prosthesis has not been the cause of failure found in other core and skirt prostheses. However, epithelialization of this kind of solid, rigid optic material is clearly impossible. The approach to the development of a hydrogeJ for potential KPro use adopted in this work is to develop soft core material to mimic the properties of the natural cornea by incorporating some hydrophilic monomers such as N, N-dimethyacrylamide (NNSMA) N~vinyl pyrrolidone (NVP) and acryloylmorpholine (AMO) with methyl methactylate (MMA). Most of these materials have been used in other ophthalmic applications, such as contact lens. However, an unavoidable limitation of simple .MMA copolymers as conventional hydrogels is poor mechanical strength. The hydrogel for use in this application must be able to withstand the stresses involved during the surgical procedure involved with KPro surgery and the in situ stresses such as the deforming force of the eyelid during the blink cycle. Thus, semi-interpenetrating polymer networks (SIPNs) based on ester polyurethane, AMO, NVP and NNDMA were examined in this work and were found to have much improved mechanical properties at water contents between 40% and 70%. Polyethylene glycol monomethacrylate (PEG MA) was successfully incorporated in order to modulate protein deposition and cell adhesion. Porous peripheral skirts were fabricated using different types of porosigen. The water content mechanical properties, surface properties and cell response of these various materials have been investigated in this thesis. These studies demonstrated that simple hydrogel SIPNs which show isotropic mechanical behaviour, are not ideal KPro materials since they do not mimic the anisotropic behaviour of natural cornea. The final stage of the work has concentrated on the study of hydrogels reinforced with mesh materials. They offer a promising approach to making a hydrogel that is very flexible but strong under tension, thereby having mechanical properties closer to the natural cornea than has been previously possible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work has been to investigate the principle of combined bioreaction and separation in a simulated counter-current chromatographic bioreactor-separator system (SCCR-S). The SCCR-S system consisted of twelve 5.4cm i.d x 75cm long columns packed with calcium charged cross-linked polystyrene resin. Three bioreactions, namely the saccharification of modified starch to maltose and dextrin using the enzyme maltogenase, the hydrolysis of lactose to galactose and glucose in the presence of the enzyme lactase and the biosynthesis of dextran from sucrose using the enzyme dextransucrase. Combined bioreaction and separation has been successfully carried out in the SCCR-S system for the saccharification of modified starch to maltose and dextrin. The effects of the operating parameters (switch time, eluent flowrate, feed concentration and enzyme activity) on the performance of the SCCR-S system were investigated. By using an eluent of dilute enzyme solution, starch conversions of up to 60% were achieved using lower amounts of enzyme than the theoretical amount required by a conventional bioreactor to produce the same amount of maltose over the same time period. Comparing the SCCR-S system to a continuous annular chromatograph (CRAC) for the saccharification of modified starch showed that the SCCR-S system required only 34.6-47.3% of the amount of enzyme required by the CRAC. The SCCR-S system was operated in the batch and continuous modes as a bioreactor-separator for the hydrolysis of lactose to galactose and glucose. By operating the system in the continuous mode, the operating parameters were further investigated. During these experiments the eluent was deionised water and the enzyme was introduced into the system through the same port as the feed. The galactose produced was retarded and moved with the stationary phase to be purge as the galactose rich product (GalRP) while the glucose moved with the mobile phase and was collected as the glucose rich product (GRP). By operating at up to 30%w/v lactose feed concentrations, complete conversions were achieved using only 48% of the theoretical amount of enzyme required by a conventional bioreactor to hydrolyse the same amount of glucose over the same time period. The main operating parameters affecting the performance of the SCCR-S system operating in the batch mode were investigated and the results compared to those of the continuous operation of the SCCR-S system. . During the biosynthesis of dextran in the SCCR-S system, a method of on-line regeneration of the resin was required to operate the system continuously. Complete conversion was achieved at sucrose feed concentrations of 5%w/v with fructose rich. products (FRP) of up to 100% obtained. The dextran rich products were contaninated by small amounts of glucose and levan formed during the bioreaction. Mathematical modelling and computer simulation of the SCCR-S. system operating in the continuous mode for the hydrolysis of lactose has been carried out. .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The continuous separation of beet molasses resulting in a sucrose rich product and a non-sugar waste product was carried out using a rotating annular chromatograph. The annulus was 12 mm wide and 1.4 m long and was packed with a sodium charged 5.5% cross-linked polystyrene ion exchange resin. Separation was achieved by the simultaneous mechanisms of ion exclusion, size exclusion and partition chromatography. The entire packed bed was slowly rotated while beet molasses was fed continuously through a stationary feed nozzle to the top of the bed. Each molasses constituent having a different relative affinity for the packing and the deionised water mobile phase describes a characteristic helical path as it progresses from the stationary feed point to the bottom of the rotating bed. Each solute then elutes from the annulus at a different angular distance from the feed and separation of the multicomponent mixture is thereby achieved. When a 35% w/w sucrose beet molasses feed was used the throughput achievable was 45.1 kg sucrose m~3 resin h"1. In addition to beet molasses separation other carbohydrate mixtures were separated. In particular the separation of glucose and fructose by Ligand exchange chromatography on a calcium charged ion exchange bed was carried out. The effects of flowrates, concentration, rotation rate, temperature and particle size on resolution and dilution of constituents in the mixtures to be separated were studied. A small test rig was designed and built to determine the cause of liquid maldistribution around the annulus. The problem was caused by the porous bed support media becoming clogged with fines being introduced by eluent flows and off the resin. An outer ring was constructed to house the bed support which could be quickly replaced with the onset of maldistribution. The computer simulation of the operation of the rotating annular chromatograph has been carried out successfully.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combined bioreaction separation studies have been carried out for the first time on a moving port semi-continuous counter-current chromatographic reactor-separator (SCCR-S1) consisting of twelve 5.4cm id x 75cm long columns packed with calcium charged cross-linked polystyrene resin (KORELA V07C). The inversion of sucrose to glucose and fructose in the presence of the enzyme invertase and the biochemIcal synthesis of dextran and fructose from sucrose in the presence of the enzyme dextransucrase were investigated. A dilute stream of the appropriate enzyme in deionised water was used as the eluent stream. The effect of switch time, feed concentration, enzyme activity, eluent rate and enzyme to feed concentration ratio on the combined bioreaction-separation were investigated. For the invertase reaction, at 20.77% w/v sucrose feed concentrations complete conversions were achieved. The enzyme usage was 34% of the theoretical enzyme amount needed to convert an equivalent amount of sucrose over the same time period when using a conventional fermenter. The fructose rich (FRP) and glucose rich (GRP) product purities obtained were over 90%. By operating at 35% w/v sucrose feed concentration and employing the product splitting and recycling techniques, the total concentration and purity of the GRP increased from 32% w/v to 4.6% and from 92.3% to 95% respectively. The FRP concentration also increased from 1.82% w/v to 2.88% w/v. A mathematical model was developed for the combined reaction-separation and used to simulate the continuous inversion of sucrose and product separation using the SCCR-S1. In the biosynthesis of dextran studies, 52% conversion of a 2% w/v sucrose concentration feed was achieved. An average dextran molecular weight of 4 millIon was obtained in the dextran rich (DRP) product stream. The enzyme dextransucrase was purifed successfully using centrifugation and ultrafiltration techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A review of the general chromatographic theory and of continuous chromatographic techniques has been carried out. Three methods of inversion of sucrose to glucose and fructose in beet molasses were explored. These methods were the inversion of sucrose using the enzyme invertase, by the use of hydrochloric acid and the use of the resin Amberlite IR118 in the H+ form. The preferred method on economic and purity considerations was by the use of the enzyme invertase. The continuous chromatographic separation of inverted beet molasses resulting in a fructose rich product and a product containing glucose and other non-sugars was carried out using a semi-continuous counter-current chromatographic refiner (SCCR6), consisting of ten 10.8cm x 75cm long stainless steel columns packed with a calcium charged 8% cross-linked polystyrene resin Zerolit SRC 14. Based on the literature this is the first time such a continuous separation has been attempted. It was found that the cations present in beet molasses displaced the calcium ions from the resin resulting in poor separation of the glucose and fructose. Three methods of maintaining the calcium form of the resin during the continuous operation of the equipment were established. Passing a solution of calcium nitrate through the purge column for half a switch period was found to be most effective as there was no contamination of the main fructose rich product and the product concentrations were increased by 50%. When a 53% total solids (53 Brix) molasses feedstock was used, the throughput was 34.13kg sugar solids per m3 of resin per hour. Product purities of 97% fructose in fructose rich (FRP) and 96% glucose in the glucose rich (GRP) products were obtained with product concentrations of 10.93 %w/w for the FRP and 10.07 %w/w for the GRP. The effects of flowrates, temperature and background sugar concentration on the distribution coefficients of fructose, glucose, betaine and an ionic component of beet molasses were evaluated and general relationships derived. The computer simulation of inverted beet molasses separations on an SCCR system has been carried out successfully.