2 resultados para COUPLED-CHANNELS

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org. © 2008 The Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponentially increasing demand on operational data rate has been met with technological advances in telecommunication systems such as advanced multilevel and multidimensional modulation formats, fast signal processing, and research into new different media for signal transmission. Since the current communication channels are essentially nonlinear, estimation of the Shannon capacity for modern nonlinear communication channels is required. This PhD research project has targeted the study of the capacity limits of different nonlinear communication channels with a view to enable a significant enhancement in the data rate of the currently deployed fiber networks. In the current study, a theoretical framework for calculating the Shannon capacity of nonlinear regenerative channels has been developed and illustrated on the example of the proposed here regenerative Fourier transform (RFT). Moreover, the maximum gain in Shannon capacity due to regeneration (that is, the Shannon capacity of a system with ideal regenerators – the upper bound on capacity for all regenerative schemes) is calculated analytically. Thus, we derived a regenerative limit to which the capacity of any regenerative system can be compared, as analogue of the seminal linear Shannon limit. A general optimization scheme (regenerative mapping) has been introduced and demonstrated on systems with different regenerative elements: phase sensitive amplifiers and the proposed here multilevel regenerative schemes: the regenerative Fourier transform and the coupled nonlinear loop mirror.