5 resultados para CORRESPONDENCE ANALYSIS
em Aston University Research Archive
Resumo:
Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.
Resumo:
Mainstream gentrification research predominantly examines experiences and motivations of the middle-class gentrifier groups, while overlooking experiences of non-gentrifying groups including the impact of in situ local processes on gentrification itself. In this paper, I discuss gentrification, neighbourhood belonging and spatial distribution of class in Istanbul by examining patterns of belonging both of gentrifiers and non-gentrifying groups in historic neighbourhoods of the Golden Horn/Halic. I use multiple correspondence analysis (MCA), a methodology rarely used in gentrification research, to explore social and symbolic borders between these two groups. I show how gentrification leads to spatial clustering by creating exclusionary practices and eroding social cohesion, and illuminate divisions that are inscribed into the physical space of the neighbourhood.
Resumo:
This thesis addressed the problem of risk analysis in mental healthcare, with respect to the GRiST project at Aston University. That project provides a risk-screening tool based on the knowledge of 46 experts, captured as mind maps that describe relationships between risks and patterns of behavioural cues. Mind mapping, though, fails to impose control over content, and is not considered to formally represent knowledge. In contrast, this thesis treated GRiSTs mind maps as a rich knowledge base in need of refinement; that process drew on existing techniques for designing databases and knowledge bases. Identifying well-defined mind map concepts, though, was hindered by spelling mistakes, and by ambiguity and lack of coverage in the tools used for researching words. A novel use of the Edit Distance overcame those problems, by assessing similarities between mind map texts, and between spelling mistakes and suggested corrections. That algorithm further identified stems, the shortest text string found in related word-forms. As opposed to existing approaches’ reliance on built-in linguistic knowledge, this thesis devised a novel, more flexible text-based technique. An additional tool, Correspondence Analysis, found patterns in word usage that allowed machines to determine likely intended meanings for ambiguous words. Correspondence Analysis further produced clusters of related concepts, which in turn drove the automatic generation of novel mind maps. Such maps underpinned adjuncts to the mind mapping software used by GRiST; one such new facility generated novel mind maps, to reflect the collected expert knowledge on any specified concept. Mind maps from GRiST are stored as XML, which suggested storing them in an XML database. In fact, the entire approach here is ”XML-centric”, in that all stages rely on XML as far as possible. A XML-based query language allows user to retrieve information from the mind map knowledge base. The approach, it was concluded, will prove valuable to mind mapping in general, and to detecting patterns in any type of digital information.
Resumo:
Cardiotocography provides significant information on foetal oxygenation linked to characteristics of foetal heart rate signals. Among most important we can mention foetal heart rate variability, whose spectral analysis is recognised like useful in improving diagnosis of pathologic conditions. However, despite its importance, a standardisation of definition and estimation of foetal heart rate variability is still searched. Some guidelines state that variability refers to fluctuations in the baseline free from accelerations and decelerations. This is an important limit in clinical routine since variability in correspondence of these FHR alterations has always been regarded as particularly significant in terms of prognostic value. In this work we compute foetal heart rate variability as difference between foetal heart rate and floatingline and we propose a method for extraction of floatingline which takes into account accelerations and decelerations. © 2011 Springer-Verlag Berlin Heidelberg.