6 resultados para CONTACT PRESSURE EVOLUTION

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tribology of linear tape storage system including Linear Tape Open (LTO) and Travan5 was investigated by combining X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Optical Microscopy and Atomic Force Microscopy (AFM) technologies. The purpose of this study was to understand the tribology mechanism of linear tape systems then projected recording densities may be achieved in future systems. Water vapour pressure or Normalized Water Content (NWC) rather than the Relative Humidity (RH) values (as are used almost universally in this field) determined the extent of PTR and stain (if produced) in linear heads. Approximately linear dependencies were found for saturated PTR increasing with normalized water content increasing over the range studied using the same tape. Fe Stain (if produced) preferentially formed on the head surfaces at the lower water contents. The stain formation mechanism had been identified. Adhesive bond formation is a chemical process that is governed by temperature. Thus the higher the contact pressure, the higher the contact temperature in the interface of head and tape, was produced higher the probability of adhesive bond formation and the greater the amount of transferred material (stain). Water molecules at the interface saturate the surface bonds and makes adhesive junctions less likely. Tape polymeric binder formulation also has a significant role in stain formation, with the latest generation binders producing less transfer of material. This is almost certainly due to higher cohesive bonds within the body of the magnetic layer. TiC in the two-phase ceramic tape-bearing surface (AlTiC) was found to oxidise to form TiO2.The oxidation rate of TiC increased with water content increasing. The oxide was less dense than the underlying carbide; hence the interface between TiO2 oxide and TiC was stressed. Removals of the oxide phase results in the formation of three-body abrasive particles that were swept across the tape head, and gave rise to three-body abrasive wear, particularly in the pole regions. Hence, PTR and subsequent which signal loss and error growth. The lower contact pressure of the LTO system comparing with the Travan5 system ensures that fewer and smaller three-body abrasive particles were swept across the poles and insulator regions. Hence, lower contact pressure, as well as reducing stain in the same time significantly reduces PTR in the LTO system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary objectives of this work were to design, construct, test and operate a novel ablative pyrolysis reactor and product recovery system. Other key objectives included the development of an ablative pyrolysis reactor design methodology, mathematical modelling of the ablation process and measurement of empirical ablation rate data at 500°C. The constructed reactor utilised a rotating blade approach to achieve particle ablation in a 258mm internal diameter reactor. By fulfilling the key requirements of high relative motion and high contact pressure, pine wood particles of maximum size 6.35 mm were successfully ablated.Sixteen experiments were carried out: five initial commissioning experiments were used to test the rotating blade concept and to solve char separation problems. Mass balances were obtained for the other eleven experiments with good closures. Based on ablatively pyrolysed dry wood, a maximum organic liquid yield of 65.9 wt% was achieved with corresponding yields of 12.4 wt% char, 11.5 wt% water and 9.2 wt% non-condensable gas. Reactor throughputs of 2 kg/h dry ablated wood were achieved at 600°C. The theoretical ablative pyrolysis reactor design methodology was simplified and improved based upon empirical data derived from wood rod ablation experiments. Yields of chemicals were qualitatively similar to those of other fast pyrolysis processes.The product recovery system, comprising hot char removal, liquids collection in two ice-cooled condensers followed by gas filtration and drying, gave good mass balance closures. The most significant problem was char separation and removal from the reactor. This was solved by using a nitrogen blow line. In general, the reactor and product collection systems performed well.Future development of the reactor would involve modification of the reactor feed tube to allow the reactor residence time to be reduced and testing of the rotating blade approach with different blade angles, configurations and numbers of blades.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Optometrists are becoming more integrally involved in the diagnosis of and care for glaucoma patients in the UK. The correlation of apparent change in non contact tonometry (NCT) IOP measurement and change in other ocular parameters such as refractive error, corneal curvature, corneal thickness and treatment zone size (data available to optometrists after LASIK) would facilitate care of these patients. Setting: A UK Laser Eye Clinic. Methods: This is a retrospective study study of 200 sequential eyes with myopia with or without astigmatism which underwent LASIK using a Hansatome and an Alcon LADARvision 4000 excimer laser. Refraction keratometry, pachymetry and NCT IOP mesurements were taken before treatmebnt and agian 3 months after treatment. The relationship between these variables anfd teh treatment zones were studied using stepwise multiple regression analysis. Results: There was a mean difference of 5.54mmHg comnparing pre and postoperative NCT IOP. IOP change correlates with refractive error change (P < 0.001), preoperative corneal thickness (P < 0.001) and treatment zone size (P = 0.047). Preoperative corneal thickness correlates with preoperative IOP (P < 0.001) and postoperative IOP (P < 0.001). Using these correlations, the measured difference in NCT IIOP can be predicted preoperatively or postoperatively using derived equations.Conclusion: There is a significant reduction in measured NCT IOP after LASIK. The amount of reduction can be calculated using data acquired by optometrists. This is helpful for opthalmologists and optometrists who co-manage glaucoma patients who have had LASIK or with glaucoma pateints who are consideraing having LASIK.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose - To investigate if the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) contact lenses (CL) is affected by the positive power of the CLs. Methods - The experimental group comprised 26 subjects, (8 male, 18 female). IOP measurements were undertaken on the subjects’ right eyes in random order using a Rebound Tonometer (ICare). The CLs had powers of +2.00 D and +6.00 D. Measurements were taken over each contact lens and also before and after the CLs had been worn. Results - The IOP measure obtained with both CLs was significantly lower compared to the value without CLs (t test; p < 0.001) but no significant difference was found between the two powers of CLs. Conclusions - Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between accommodation and intraocular pressure (lOP) has not been addressed as a research question for over 20 years, when measurement of both of these parameters was less advanced than today. Hence the central aim of this thesis was to evaluate the effects of accommodation on lOP. The instrument of choice throughout this thesis was the Pulsair EasyEye non-contact tonometer (NCT) due principally to its slim-line design which allowed the measurement of lOP in one eye and simultaneous stimulation of accommodation in the other eye. A second reason for using the Pulsair EasyEye NCT was that through collaboration with the manufacturers (Keeler, UK) the instrument's operational technology was made accessible. Hence, the principle components underpinning non-contact lOP measures of 0.1mmHg resolution (an order of magnitude greater than other methods) were made available. The relationship between the pressure-output and corneal response has been termed the pressure-response relationship, aspects of which have been shown to be related to ocular biometric parameters. Further, analysis of the components of the pressure-response relationship together with high-speed photography of the cornea during tonometry has enhanced our understanding of the derivation of an lOP measure with the Pulsair EasyEye NCT. The NCT samples the corneal response to the pressure pulse over a 19 ms cycle photoelectronically, but computes the subject's lOP using the data collected in the first 2.34 ms. The relatively instantaneous nature of the lOP measurement renders the measures susceptible to variations in the steady-state lOP caused by the respiratory and cardiac cycles. As such, the variance associated with these cycles was minimised by synchronising the lOP measures with the cardiac trace and maintaining a constant pace respiratory cycle at 15 breathes/minute. It is apparent that synchronising the lOP measures with the peak, middle or trough of the cardiac trace significantly reduced the spread of consecutive measures. Of the 3 locations investigated, synchronisation with the middle location demonstrated the least variance (coeflicient of variation = 9.1%) and a strong correlation (r = 0.90, p = <0.001) with lOP values obtained with Goldmann contact tonometry (n = 50). Accordingly lOP measures synchronised with the middle location of the cardiac cycle were taken in the RE while the LE fixated low (L; zero D), intermediate (I; 1.50 D) and high (H; 4 D) accommodation targets, Quasi-continuous measures of accommodation responses were obtained during the lOP measurement period using the portable infrared Grand Seiko FR-5000 autorefractor. The lOP reduced between L and I accommodative levels by approximately 0.61 mmHg (p <0.00 I). No significant reduction in IOP between L and H accommodation levels was elicited (p = 0.65) (n = 40). The relationship between accommodation and lOP was characterised by substantial inter-subject variations. Myopes demonstrated a tendency to show a reduction in IOP with accommodation which was significant only with I accommodation levels when measured with the NCT (r = 0.50, p = 0.01). However, the relationship between myopia and lOP change with accommodation reached significance for both I (r = 0.61, p= 0.003) and H (r = 0.531, p= 0.0 1) accommodation levels when measured with the Ocular blood Flow Analyser (OBFA). Investigation of the effects of accommodation on the parameters measured by the OBFA demonstrated that with H accommodation levels the pulse amplitude (PA) and pulse rate (PR) responses differed between myopes and emmetropes (PA: p = 0.03; PR: p = 0.004). As thc axial length increased there was a tendency for the pulsatile ocular blood flow (POBF) to reduce with accommodation, which was significant only with H accommodation levels (r = 0.38, p = 0.02). It is proposed that emmetropes arc able to regulate the POBF responses to changes in ocular perfusion pressure caused by changes in lOP with I (r = 0.77, p <0.001) and H (r = 0.73, p = 0.001) accommodation levels. However, thc relationship between lOP and POBF changes in the myopes was not correlated for both I (r = 0.33, p = 0.20) and H (r = 0.05, p = 0.85) accommodation levels. The thesis presents new data on the relationships between accommodation, lOP and parameters of the OBFA,: and provides evidence for possible lOP and choroidal blood flow regulatory mechanisms. Further the data highlight possible deficits in the vascular regulation of the myopic eye during accommodation, which may play a putative role in the aetiology of myopia development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To analyse the relationship between measured intraocular pressure (IOP) and central corneal thickness (CCT), corneal hysteresis (CH) and corneal resistance factor (CRF) in ocular hypertension (OHT), primary open-angle (POAG) and normal tension glaucoma (NTG) eyes using multiple tonometry devices. Methods: Right eyes of patients diagnosed with OHT (n=47), normal tension glaucoma (n=17) and POAG (n=50) were assessed, IOP was measured in random order with four devices: Goldmann applanation tonometry (GAT); Pascal(R) dynamic contour tonometer (DCT); Reichert(R) ocular response analyser (ORA); and Tono-Pen(R) XL. CCT was then measured using a hand-held ultrasonic pachymeter. CH and CRF were derived from the air pressure to corneal reflectance relationship of the ORA data. Results: Compared to the GAT, the Tonopen and ORA Goldmann equivalent (IOPg) and corneal compensated (IOPcc) measured higher IOP readings (F=19.351, p<0.001), particularly in NTG (F=12.604, p<0.001). DCT was closest to Goldmann IOP and had the lowest variance. CCT was significantly different (F=8.305, p<0.001) between the 3 conditions as was CH (F=6.854, p=0.002) and CRF (F=19.653, p<0.001). IOPcc measures were not affected by CCT. The DCT was generally not affected by corneal biomechanical factors. Conclusion: This study suggests that as the true pressure of the eye cannot be determined non-invasively, measurements from any tonometer should be interpreted with care, particularly when alterations in the corneal tissue are suspected.