6 resultados para COMMON DUE-DATE
em Aston University Research Archive
Resumo:
This thesis reviews the existing manufacturing control techniques and identifies their practical drawbacks when applied in a high variety, low and medium volume environment. It advocates that the significant drawbacks inherent in such systems, could impair their applications under such manufacturing environment. The key weaknesses identified in the system were: capacity insensitive nature of Material Requirements Planning (MRP); the centralised approach to planning and control applied in Manufacturing Resources Planning (MRP IT); the fact that Kanban can only be used in repetitive environments; Optimised Productivity Techniques's (OPT) inability to deal with transient bottlenecks, etc. On the other hand, cellular systems offer advantages in simplifying the control problems of manufacturing and the thesis reviews systems designed for cellular manufacturing including Distributed Manufacturing Resources Planning (DMRP) and Flexible Manufacturing System (FMS) controllers. It advocates that a newly developed cellular manufacturing control methodology, which is fully automatic, capacity sensitive and responsive, has the potential to resolve the core manufacturing control problems discussed above. It's development is envisaged within the framework of a DMRP environment, in which each cell is provided with its own MRP II system and decision making capability. It is a cellular based closed loop control system, which revolves on single level Bill-Of-Materials (BOM) structure and hence provides better linkage between shop level scheduling activities and relevant entries in the MPS. This provides a better prospect of undertaking rapid response to changes in the status of manufacturing resources and incoming enquiries. Moreover, it also permits automatic evaluation of capacity and due date constraints and hence facilitates the automation of MPS within such system. A prototype cellular manufacturing control model, was developed to demonstrate the underlying principles and operational logic of the cellular manufacturing control methodology, based on the above concept. This was shown to offer significant advantages from the prospective of operational planning and control. Results of relevant tests proved that the model is capable of producing reasonable due date and undertake automation of MPS. The overall performance of the model proved satisfactory and acceptable.
Resumo:
Hydrocarbons are the most common form of energy used to date. The activities involving exploration and exploitation of large oil and gas fields are constantly in operation and have extended to such hostile environments as the North Sea. This enforces much greater demands on the materials which are used, and the need for enhancing the endurance of the existing ones which must continue parallel to the explorations. Due to their ease in fabrication, relatively high mechanical properties and low costs, steels are the most widely favoured material for the construction of offshore platforms. The most critical part of an offshore structure prone to failure are the welded nodal joints, particulary those which are used within the vicinity of the splash zones. This is an area of high complex stress concentrations, varying mechanical and metallurgical properties in addition to severe North Sea environmental conditions. The main are of this work has been concerned with the durability studies of this type of steel, based on the concept of the worst case analysis, consisting of combinations of welds of varying qualities, various degrees of stress concentrations and the environmental conditions of stress corrosion and hydrogen embrittlement. The experiments have been designed to reveal significance of defects as sites of crack initiation in the welded steels and the extent to which stress corrosion and hydrogen embrittlement will limit their durability. This has been done for various heat treatments and in some experiments deformation has been forced through the welded zone of the specimens to reveal the mechanical properties of the welds themselves to provide data for finite element simulations. A comparison of the results of these simulations with the actual deformation and fracture behaviour has been done to reveal the extent to which both mechanical and metallurgical factors control behaviour of the steels in the hostile environments of high stress, corrosion, and hydrogen embrittlement at their surface.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Abstract Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the patho-physiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientist became more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods.
Resumo:
Aim: Identify the incidence of vitreomacular traction (VMT) and frequency of reduced vision in the absence of other coexisting macular pathology using a pragmatic classification system for VMT in a population of patients referred to the hospital eye service. Methods: A detailed survey of consecutive optical coherence tomography (OCT) scans was done in a high-throughput ocular imaging service to ascertain cases of vitreomacular adhesion (VMA) and VMT using a departmental classification system. Analysis was done on the stages of traction, visual acuity, and association with other macular conditions. Results: In total, 4384 OCT scan episodes of 2223 patients were performed. Two hundred and fourteen eyes had VMA/VMT, with 112 eyes having coexisting macular pathology. Of 102 patients without coexisting pathology, 57 patients had VMT grade between 2 and 8, with a negative correlation between VMT grade and number of Snellen lines (r= -0.61717). There was a distinct cutoff in visual function when VMT grade was higher than 4 with the presence of cysts and sub retinal separation and breaks in the retinal layers. Conclusions: VMT is a common encounter often associated with other coexisting macular pathology. We estimated an incidence rate of 0.01% of VMT cases with reduced vision and without coexisting macular pathology that may potentially benefit from intervention. Grading of VMT to select eyes with cyst formation as well as hole formation may be useful for targeting patients who are at higher risk of visual loss from VMT.
Resumo:
Imagining a familiar environment is different from imagining an environmental map and clinical evidence demonstrated the existence of double dissociations in brain-damaged patients due to the contents of mental images. Here, we assessed a large sample of young and old participants by considering their ability to generate different kinds of mental images, namely, buildings or common objects. As buildings are environmental stimuli that have an important role in human navigation, we expected that elderly participants would have greater difficulty in generating images of buildings than common objects. We found that young and older participants differed in generating both buildings and common objects. For young participants there were no differences between buildings and common objects, but older participants found easier to generate common objects than buildings. Buildings are a special type of visual stimuli because in urban environments they are commonly used as landmarks for navigational purposes. Considering that topographical orientation is one of the abilities mostly affected in normal and pathological aging, the present data throw some light on the impaired processes underlying human navigation.