65 resultados para COHERENT OTDR
em Aston University Research Archive
Resumo:
Examines the basis on which damages for misrepresentation are awarded, suggesting that the underlying principles lack coherence, and calls for clarification of the law. Argues that there are valid policy considerations justifying a distinction between the basis of the award of damages for fraudulent misrepresentation and negligent misrepresentation. Explains why identification of the three stages in the process of awarding damages for misrepresentation are crucial to the application of the underlying legal principles of causation and remoteness at the right stage of the process. Reviews case law on lost opportunity damages for fraudulent misrepresentation, the application of loss of chance principles, and recovery of post-contract losses.
Resumo:
We present a theory of coherent propagation and energy or power transfer in a low-dimension array of coupled nonlinear waveguides. It is demonstrated that in the array with nonequal cores (e.g., with the central core) stable steady-state coherent multicore propagation is possible only in the nonlinear regime, with a power-controlled phase matching. The developed theory of energy or power transfer in nonlinear discrete systems is rather generic and has a range of potential applications including both high-power fiber lasers and ultrahigh-capacity optical communication systems. © 2012 American Physical Society.
Resumo:
A bidirectional nonreciprocal wavelength-interleaving filter based on an optically coherent high birefringence fiber transversal filter structure is demonstrated. Stable, low loss, low dispersion, and high isolation operation is demonstrated with reconfigurable transfer characteristics for interleaved channel spacing of 0.8 nm.
Resumo:
A numerical continuation method is carried out in a homotopy space connecting two different flows, the Plane Couette Flow (PCF) and the Laterally Heated Flow in a vertical slot (LHF). This numerical continuation method enables us to obtain an exact steady solution in PCF. The new solution has the shape of hairpin vortices (HVS: hairpin vortex solution), which is observed ubiquitously in turbulent shear flows.
Resumo:
Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation.
Resumo:
In this paper we report field transmission of a 2Tbit/s multi-banded Coherent WDM signal over BT Ireland's installed SMF, using EDFA amplification only, with mixed Ethernet (with FEC) and PRBS payloads. To the best of our knowledge, the results obtained represent the highest total capacity transmitted over installed SMF with orthogonal subcarriers. BERs below 10(-5) and no frame-loss were recorded for all 49 subcarriers. Extended BER measurements over several hours showed fluctuations that can be attributed to PMD and to dynamic effects associated with clock instabilities.
Resumo:
Low-cost, high-capacity optical transmission systems are required for metropolitan area networks. Direct-detected multi-carrier systems are attractive candidates, but polarization mode dispersion (PMD) is one of the major impairments that limits their performance. In this paper, we report the first experimental analysis of the PMD tolerance of a 288Gbit/s NRZ-OOK Coherent Wavelength Division Multiplexing system. The results show that this impairment is determined primarily by the subcarrier baud rate. We confirm the robustness of the system to PMD by demonstrating error-free performance over an unrepeatered 124km field-installed single-mode fiber with a negligible penalty of 0.3dB compared to the back-to-back measurements. (C) 2010 Optical Society of America
Resumo:
We propose a novel recursive-algorithm based maximum a posteriori probability (MAP) detector in spectrally-efficient coherent wavelength division multiplexing (CoWDM) systems, and investigate its performance in a 1-bit/s/Hz on-off keyed (OOK) system limited by optical-signal-to-noise ratio. The proposed method decodes each sub-channel using the signal levels not only of the particular sub-channel but also of its adjacent sub-channels, and therefore can effectively compensate deterministic inter-sub-channel crosstalk as well as inter-symbol interference arising from narrow-band filtering and chromatic dispersion (CD). Numerical simulation of a five-channel OOK-based CoWDM system with 10Gbit/s per channel using either direct or coherent detection shows that the MAP decoder can eliminate the need for phase control of each optical carrier (which is necessarily required in a conventional CoWDM system), and greatly relaxes the spectral design of the demultiplexing filter at the receiver. It also significantly improves back-to-back sensitivity and CD tolerance of the system.
Resumo:
Polarization-switched quadrature phase-shift keying has been demonstrated experimentally at 40.5Gb/s with a coherent receiver and digital signal processing. Compared to polarization-multiplexed QPSK at the same bit rate, its back-to-back sensitivity at 10-3 bit-error-ratio shows 0.9dB improvement, and it tolerates about 1.6dB higher launch power for 10 × 100km, 50GHz-spaced WDM transmission allowing 1dB penalty in required optical-signal-to-noise ratio relative to back-to-back.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
Optically multiplexed multi-carrier systems with channel spacing reduced to the symbol rate per carrier are highly susceptible to inter-channel crosstalk, which places stringent requirements for the specifications of system components and hinders the use of high-level formats. In this paper, we investigate the performance benefits of using offset 4-, 16-, and 64-quadrature amplitude modulation (QAM) in coherent wavelength division multiplexing (CoWDM). We compare this system with recently reported Nyquist WDM and no-guard-interval optical coherent orthogonal frequency division multiplexing, and show that the presented system greatly relaxes the requirements for device specifications and enhances the spectral efficiency by enabling the use of high-level QAM. The achieved performance can approach the theoretical limits using practical components.
Resumo:
We report a novel real-time homodyne coherent receiver based on a DPSK optical-electrical-optical (OEO) regenerator used to extract a carrier from carrier-less phase modulated signals based on feed-forward based modulation stripping. The performance of this non-DSP based coherent receiver was evaluated for 10.66Gbit/s BPSK signals. Self-homodyne coherent detection and homodyne detection with an injection-locked local oscillator laser was demonstrated. The performance was evaluated by measuring the electrical signal-to-noise (SNR) and recording the eye diagrams. Using injection-locking for the LO improves the performance and enables homodyne detection with optical injection-locking to operate with carrier-less BPSK signals without the need for polarization multiplexed pilot-tones.
Resumo:
The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.