5 resultados para COBALT(II) CARBOXYLATE

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of applied magnetic fields on the traveling wave formed by the reaction of (ethylenediaminetetraacetato)cobalt(II) (Co(II)EDTA2-) and hydrogen peroxide have been studied using magnetic resonance imaging (MRI). It was found that the wave could be manipulated by applying pulsed magnetic field gradients to a sample contained in a vertical cylindrical tube in the 7.0 T magnetic field of the spectrometer. Transverse field gradients decelerated the propagation of the wave down the high-field side of the tube and accelerated it down the low-field side. This control of the wave propagation eventually promoted the formation of a finger on the low-field side of the tube and allowed the wave to be maneuvered within the sample tube. The origin of these effects is rationalized by considering the Maxwell stress arising from the combined homogeneous and inhomogeneous magnetic fields and the magnetic susceptibility gradient across the wave front.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic field dependence of the travelling wave formed during the reaction of (ethylenediaminetetraacetato)cobalt (II) (Co(II)EDTA2- ) and hydrogen peroxide was studied using magnetic resonance imaging (MRI). The reaction was investigated in a vertical tube, in which the wave was initiated from above. The wave propagated downwards, initially with a flat wavefront before forming a finger. Magnetic field effects were observed only once the finger had formed. The wave propagation was accelerated by a magnetic field with a negative gradient (i.e., when the field was stronger at the top of the tube than at the bottom) and slightly decelerated by positive field gradients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing energy, has attracted increasing attention by many research groups. One of the reasons is the promising potential for practical applications. In this chapter we intend to cover essential recent work, primarily accomplished within the European research network on “Thermal and Optical Switching of Molecular Spin States (TOSS)”. New spin crossover compounds and their thermal spin transition behaviour, also under applied pressure, novel effects observed by irradiation and magnetic field, will be discussed. Progress in theoretical treatments of spin crossover phenomena, particularly cooperativity, will be briefly outlined. The chapter concludes with a summary of research highlights published by the partner laboratories of the TMR network TOSS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The whole set of the nickel(II) complexes with no derivatized edta-type hexadentate ligands has been investigated from their structural and electronic properties. Two more complexes have been prepared in order to complete the whole set: trans(O5)-[Ni(ED3AP)]2- and trans(O5O6)-[Ni(EDA3P)]2- complexes. trans(O5) geometry has been verified crystallographically and trans(O5O6) geometry of the second complex has been predicted by the DFT theory and spectral analysis. Mutual dependance has been established between: the number of the five-membered carboxylate rings, octahedral/tetrahedral deviation of metal-ligand/nitrogen-neighbour-atom angles and charge-transfer energies (CTE) calculated by the Morokuma’s energetic decomposition analysis; energy of the absorption bands and HOMO–LUMO gap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The O–O–N–N–O-type pentadentate ligands H3ed3a, H3pd3a and H3pd3p (H3ed3a stands ethylenediamine-N,N,N′-triacetic acid; H3pd3a stands 1,3-propanediamine-N,N,N′-triacetic acid and H3pd3p stands 1,3-propanediamine-N,N,N′-tri-3-propionic acid) and the corresponding novel octahedral or square-planar/trigonal-bipyramidal copper(II) complexes have been prepared and characterized. H3ed3a, H3pd3a and H3pd3p ligands coordinate to copper(II) ion via five donor atoms (three deprotonated carboxylate atoms and two amine nitrogens) affording octahedral in case of ed3a3− and intermediate square-pyramidal/trigonal-bipyramidal structure in case of pd3a3− and pd3p3−. A six coordinate, octahedral geometry has been established crystallographically for the [Mg(H2O)6][Cu(ed3a)(H2O)]2 · 2H2O complex and five coordinate square-pyramidal for the [Mg(H2O)5Cu(pd3a)][Cu(pd3a)] · 2H2O. Structural data correlating similar chelate Cu(II) complexes have been used for the better understanding the pathway: octahedral → square-pyramidal ↔ trigonal- bipyramid geometry. An extensive configuration analysis is discussed in relation to information obtained for similar complexes. The infra-red and electronic absorption spectra of the complexes are discussed in comparison with related complexes of known geometries. Molecular mechanics and density functional theory (DFT) programs have been used to model the most stable geometric isomer yielding, at the same time, significant structural data. The results from density functional studies have been compared with X-ray data.