16 resultados para CO ALLOY CATALYSTS

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Propylsulfonic acid (PrSO3H) derivatised solid acid catalysts have been prepared by post modification of mesoporous SBA-15 silica with mercaptopropyltrimethoxysilane (MPTMS), with the impact of co-derivatisation with octyltrimethoxysilane (OTMS) groups to impart hydrophobicity to the catalyst investigated. Turn over frequencies (TOF) for acetic acid esterification with methanol increase with PrSO3H surface coverage across both families suggesting a cooperative effect of adjacent acid sites at high acid site densities. Esterification activity is further promoted upon co-functionalisation with hydrophobic octyl chains, with inverse gas chromatography (iGC) measurements indicating increased activity correlates with decreased surface polarity or increased hydrophobicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research described herein relates to studies into the Aqueous Ring-Opening Metathesis Polymerisation (ROMP) of bicyclic monomers using ruthenium complex catalysts. Two monomers were synthesised for the purpose of these studies, namely exo, exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (7-oxanorbornenedicarboxylic acid) and exo, exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (norbornene dicarboxylic acid). A number of ruthenium complexes were synthesised, amongst them a novel complex containing the water soluble phosphine ligand trist(hydroxymethyl)phosphine P(CH2OH)3. Its synthesis and characterisation are described and its physical properties compared and contrasted to analogous compounds of platinum and palladium. Its peculiar properties are ascribed to a trans-placement of the phosphine ligands. Dilatometry was investigated as a technique for the acquisition of kinetic data from aqueous metathesis reactions. For the attempted polymerisation of 7-oxanorbonenedicarboxylic acid the results are explained in terms of a reverse Diels-Alder reaction of the monomer. The reaction between Ru(CO)Cl2(H2O) and 7-oxanorbonenedicarboxylic acid was monitored using UV/Vis spectrometry and kinetic data retrieved. The data are explained in terms of a two stage reaction consisting of consecutive first order processes.The reaction between 7-oxanorbornenedicarboxylic acid and Ru(CO)Cl2(H2O) or Ru(P(CH2OH)3)3Cl2 was found to produce fumaric acid as one of the major products. This reaction is previously unreported in the literature and a mechanism is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel metathesis catalyst for the polymerisation of acetylene has been developed. The polyacetylene produced by this new catalyst has been characterised by infra-red and NMR spectroscopy. The conductivity of the pristine material has been studied as a function of temperature, pressure and frequency. The effect on the conductivity of doping the material has also been investigated. The new metathesis catalyst has been incorporated into an anionic-to-metathesis transformation reaction. This novel reaction has been used to prepare samples of poly(styrene-co-acetylene). The copolymer has been characterised using U.V./Visible, NMR, infra-red spectroscopy and the surface morphology looked at using scanning electron microscopy. GPC was also used to give some idea of the molecular weights of the materials prepared. The conductivity of the copolymer has been studied as a function of temperature, pressure and frequency. The effect of doping on the conductivity the material has also been investigated. The conductivity results obtained from both materials have been used to try and gain an insight into the mechanism of the conduction processes occurring within the materials. An attempt has also been made to synthesise polyacetylene oligomers (polyenes) by modifying the Ziegler/Natta type catalysts commonly used to synthesise polyacetylene. The polyenes were characterised using U.V./Visible and infra-red spectroscopy together with GPC and GCMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increase use of de-icing salts on roads for safety, the need for improved corrosion resistance of the traditional galvanized automobile bodies has never been greater. In the present work, Zn alloy coatings (Zn-Ni and Zn-Co) were studied as an alternative to pure Zn coatings. The production of these deposits involved formulation of various acidic (pH of about 5.5) chloride based solutions. These showed anomalous deposition, that is, alloys were deposited much more easily than expected from the noble behaviour of Ni and Co metals. Coating compositions ranging from 0 to about 37% Ni and 20% Co were obtained. The chemical composition of the coatings depended very much on the electrolytes nature and operating conditions. The Ni content of deposits increased with increase in Ni bath concentration, temperature, pH and solution agitation but decreased considerably with increase in current density. The throwing power of the Zn-Ni solution deteriorated as Ni metal bath concentration increased. The Co content of deposits also increased with increase in Co bath concentration and temperature, and decreased with increase in current density. However, the addition of commercial organic additives to Zn-Co plating solutions suppressed considerably the amount of Co in the coatings. The Co content of deposits plated from Zincrolyte solution was found to be more sensitive to variation in current density than in the case of deposits plated from the alkaline Canning solution. The chromating procedures were carried out using laboratory formulated solution and commercially available ones. The deposit surface state was of great significance in influencing the formulation of conversion coatings. Bright and smooth deposits acquired an iridescent colour when treated with the laboratory formulated solution. However, the dull deposits acquired a brownish appearance. The correlation between the electrochemical test results and the neutral salt spray in marine environment was good. Non-chromated Zn-Ni coatings containing about 11-14% Ni increased in corrosion resistance compared to pure Zn. Non-chromated Zn-Co deposits of composition 4-8% were required to show a significant improvement in corrosion resistance Corrosion resistance was improved considerably by conversion coating. However, the type of conversion coating was very important. Samples treated in a laboratory solution performed badly compared to those treated in commercial solutions. Zn alloy coatings were superior to pure Zn, the Schloetter sample (13.8% Ni) had the lowest corrosion rate, followed by the Canning sample (1.0% Co) and then Zincrolyte (0.3% Co).Neither the chromium content of the conversion films nor the chromium state was found to have an effect on corrosion performance of the coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper deals with experimentation of ZrO2 and Al2O3-supported catalysts for conversion of naphthalene, chosen as tar model compound of pyrolysis or gasification syngas. In particular, the reforming capacity of active metals and promoters such as Co, Ni, Fe, Cr, Ce and Pt was tested in a fixed bed reactor at temperature from 400 to 900 °C. As regards ZrO2-supported catalysts, the best results were achieved by the Ni/Fe/Pt catalyst with 96% naphthalene conversion, 78% and 280% as CO and H2 production yield at 800 °C. Regarding Al2O3-supported catalysts, they were more active on average than the zirconia ones, achieving a very good performance even at 500 °C (90–100% naphthalene conversion, 30–40% CO yield and 300–350% H2 yield at 550 °C). Influence of different amounts of alumina, montmorillonite and carbon on carrier composition as well as pellets’ size were also studied. Both zirconia and alumina catalysts showed deactivation at higher temperatures due to coke deposition, resulting in a strong H2 production drop. Regeneration of catalysts by O2 and steam as well as activation by H2 were also studied. The activated catalyst was able to convert more than 99% naphthalene at 450 °C with a CO and H2 production yield of 26% and 420%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly ordered mesoporous alumina was prepared via evaporation induced self assembly and was impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed (0.9–2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of diverse allylic alcohols, with activity inversely proportional to alcohol mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconium-containing periodic mesoporous organosilicas (Zr-PMOs) with varying framework organic content have been synthesized through a direct synthesis method. These materials display the excellent textural properties of the analogous inorganic solid acid Zr-SBA-15 material. However, the substitution of silica by organosilicon species provides a strong hydrophobic character. This substitution leads to meaningful differences in the environment surrounding the zirconium metal sites, leading the modification of the catalytic properties of these materials. Although lower metal incorporation is accomplished in the final materials, leading to a lower population of metal sites, hydrophobisation leads to an impressive beneficial effect on the intrinsic catalytic activity of the zirconium sites in biodiesel production by esterification/transesterification of free fatty acid -containing feedstock. Moreover, the catalytic activity of the highly hybridised materials is hardly affected in presence of large amounts of water, confirming their very good water-tolerance. This makes Zr-PMO materials interesting catalysts for biodiesel production from highly acidic water-containing feedstock. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust, bifunctional catalysts comprising Rh(CO)(Xantphos) exchanged phosphotungstic acids of general formulas [Rh(CO)(Xantphos)]+n[H3–nPW12O40]n− have been synthesized over silica supports which exhibit tunable activity and selectivity toward direct vapor phase methanol carbonylation. The optimal Rh:acid ratio = 0.5, with higher rhodium concentrations increasing the selectivity to methyl acetate over dimethyl ether at the expense of lower acidity and poor activity. On-stream deactivation above 200 °C reflects Rh decomplexation and reduction to Rh metal, in conjunction with catalyst dehydration and loss of solid acidity because of undesired methyl acetate hydrolysis, but can be alleviated by water addition and lower temperature operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dual catalyst system for the Selective Catalytic Reduction of NOx with hydrocarbons (HC-SCR), including distinct low and high temperature formulations, is proposed as a means to abate NOx emissions from diesel engines. Given that satisfactory high temperature HC-SCR catalysts are already available, this work focuses on the development of an improved low temperature formulation. Pt supported on multiwalled carbon nantubes (MWCNTs) was found to exhibit superior NOx reduction activity in comparison with Pt/Al2O3, while the MWCNT support displayed a higher resistance to oxidation than activated carbon. Refluxing the MWCNT support in a 1:1 mixture of H2SO4 and HNO3 prior to the metal deposition step proved to be beneficial for the metal dispersion and the NOx reduction performance of the resulting catalysts. This support effect is ascribed to the increased Brønsted acidity of the acid-treated MWCNTs, which in turn enhances the partial oxidation of the hydrocarbon reductant. Further improvements in the HC-SCR performance of MWCNT-based formulations were achieved using a 3:1 Pt–Rh alloy as the supported phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive surface of mesoporous nanocrystalline silicon was used to synthesise noble metal nanoparticles via in situ reduction of the precursor salt solutions. The synthetic methodology for metal nanoparticle formation was systematically developed, and reaction conditions of metal salts reduction were optimised to prepare nanoparticles of controlled size distribution in the order 5–10 nm inside the mesoporous silicon template. CO oxidation was used as a test reaction for the synthesised Pt/porous silicon catalysts. Sharp reaction light-off was observed at about 120 °C on the optimised catalysts. The catalysts were shown to be stable in the extended steady-state runs and in the catalysts re-use experiments. Metal nanoparticles were shown to be stable to sintering at elevated temperatures up to 1000 °C. However, after thermal treatment on air, Pt nanoparticles were covered by a SiOx layer and were less active in CO oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of heterogeneous catalysts for the manufacture of renewable biodiesel fuels offers an exciting, alternative clean chemical technology to current energy intensive processes employing soluble base catalysts. We recently synthesised tuneable MgO nanocrystals as efficent solid base catalysts for biodiesel synthesis, and have developed a simple X-ray spectroscopic method to quantitatively determine surface basicity, thereby providing a rapid screening tool for predicting the reactivity of new solid base catalysts. Promotion of these MgO nanocrystals through Cs doping dramatically enhances biodiesel production rates due to the formaion of a mixed Cs Mg(CO ) phase. These MgO derived nanocatalysts permit energy efficent, continuous processing of diverse, sustainable oil feedstocks in flow reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siliceous mesoporous molecular sieves (SBA-15) have been functionalised with propylsulfonic acid groups by both co-condensing 3-mercaptopropyltrimethoxysilane with the solid at the synthesis (sol-gel) stage and by grafting the same compound to pre-prepared SBA-15, followed, in both cases, by oxidation to sulfonic acid. The acidic and catalytic properties of the supported sulfonic acids prepared in the two ways have been compared, using ammonia adsorption calorimetry and the benzylation reaction between benzyl alcohol and toluene. Using a combination of X-ray photoelectron spectroscopy and other analytical techniques, the level of functionalisation and the extent of subsequent oxidation of tethered thiol to sulfonic acid, both in the bulk and close to the surface of SBA-15 particles, have been assessed. The research shows that the co-condensing route leads to higher levels of functionalisation than the grafting route. The extent of oxidation of added thiol to acid groups is similar using the two routes, about 70% near the surface and only 50% in the bulk. Comparison is made with polymer supported sulfonic acid catalysts, Amberlysts 15 and 35, and Nafion. Nafion shows the highest acid strength and the highest specific catalytic activity of all materials studied. Amongst the other materials, average acid strengths are broadly similar but there appears to be a relationship between the concentration of acid sites on the catalysts and their specific activity in the benzylation reaction. A model is proposed to explain this, in which clustering of sulfonic acid groups, even to a small extent, leads to disproportionately enhanced catalytic activity. © 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of CoFe2O4 nanoparticles have been prepared via co-precipitation and controlled thermal sintering, with tunable diameters spanning 7–50 nm. XRD confirms that the inverse spinel structure is adopted by all samples, while XPS shows their surface compositions depend on calcination temperature and associated particle size. Small (<20 nm) particles expose Fe3+ enriched surfaces, whereas larger (∼50 nm) particles formed at higher temperatures possess Co:Fe surface compositions close to the expected 1:2 bulk ratio. A model is proposed in which smaller crystallites expose predominately (1 1 1) facets, preferentially terminated in tetrahedral Fe3+ surface sites, while sintering favours (1 1 0) and (1 0 0) facets and Co:Fe surface compositions closer to the bulk inverse spinel phase. All materials were active towards the gas-phase methylation of phenol to o-cresol at temperatures as low as 300 °C. Under these conditions, materials calcined at 450 and 750 °C exhibit o-cresol selectivities of ∼90% and 80%, respectively. Increasing either particle size or reaction temperature promotes methanol decomposition and the evolution of gaseous reductants (principally CO and H2), which may play a role in CoFe2O4 reduction and the concomitant respective dehydroxylation of phenol to benzene. The degree of methanol decomposition, and consequent H2 or CO evolution, appears to correlate with surface Co2+ content: larger CoFe2O4 nanoparticles have more Co rich surfaces and are more active towards methanol decomposition than their smaller counterparts. Reduction of the inverse spinel surface thus switches catalysis from the regio- and chemo-selective methylation of phenol to o-cresol, towards methanol decomposition and phenol dehydroxylation to benzene. At 300 °C sub-20 nm CoFe2O4 nanoparticles are less active for methanol decomposition and become less susceptible to reduction than their 50 nm counterparts, favouring a high selectivity towards methylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an efficient one-pot conversion of glycerol (GLY) to methyl lactate (MLACT) in methanol in good yields (73 % at 95 % GLY conversion) by using Au nanoparticles on commercially available ultra-stable zeolite-Y (USY) as the catalyst (160 °C, air, 47 bar pressure, 0.25 M GLY, GLY-to-Au mol ratio of 1407, 10 h). The best results were obtained with zeolite USY-600, a catalyst that has both Lewis and Brønsted sites. This methodology provides a direct chemo-catalytic route for the synthesis of MLACT from GLY. MLACT is stable under the reaction conditions, and the Au/USY catalyst was recycled without a decrease in the activity and selectivity. From glycerol to green building blocks and solvents! An efficient, base-free conversion of glycerol to methyl lactate in methanol is reported, achieving good yields (73 % at 95 % glycerol conversion) using Au/ultra-stable zeolite-Y (USY) as the catalyst and environmentally benign oxygen as the oxidant by combining two separate reaction steps efficiently in a one pot procedure. The Au/USY catalyst can be recycled without a decrease in the activity and selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.