3 resultados para CNF-monolith
em Aston University Research Archive
Resumo:
Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.
Resumo:
The twin goals of low and efficient fuel use and minimum emissions are increasingly being addressed by research in both the motor and the catalyst industries of the world. This study was designed to attempt to investigate these goals. For diesel engine vehicles, this can be achieved by improving the efficiency of the fuel combustion in the combustion chamber. By having a suitable oxidation catalyst in the fuel one would expect the efficiency of the fuel combustion to be increased and fewer partial oxidation products to be formed. Also by placing a catalyst converter in the exhaust system partial oxidation products may be converted to more desirable final products. Finally, in this research the net catalytic effect of using an additive treated fuel and a blank ceramic monolith to trap the metal in the exhaust gases for potential use as catalytic converter was investigated. Suitable metal additives must yield a stable solution in the fuel tank. That is, they should not react with the air, water and rust that are always present. The research was targeted on the synthesis of hydrocarbon-soluble complexes that might exhibit unusually slow rates of ligand substitution. For materials containing metal ions, these properties are best met by using multi-dentate ligands that form neutral complexes. Metal complexes have been synthesised using acetylacetone derivatives, schiff base ligands and macrocyclic polyamine ligands, as potential pro-oxidant additives. Their thermal stabilities were also investigated using a differential thermal analysis instrument. The complexes were then investigated as potential additives for use in diesel fuel. The tests were conducted under controlled conditions using a diesel combustion bomb simulating the combustion process in the D.I. diesel engine, a test bed engine, and a vehicle engine.
Resumo:
Phospholipid oxidation by adventitious damage generates a wide variety of products with potentially novel biological activities that can modulate inflammatory processes associated with various diseases. To understand the biological importance of oxidised phospholipids (OxPL) and their potential role as disease biomarkers requires precise information about the abundance of these compounds in cells and tissues. There are many chemiluminescence and spectrophotometric assays available for detecting oxidised phospholipids, but they all have some limitations. Mass spectrometry coupled with liquid chromatography is a powerful and sensitive approach that can provide detailed information about the oxidative lipidome, but challenges still remain. The aim of this work is to develop improved methods for detection of OxPLs by optimisation of chromatographic separation through testing several reverse phase columns and solvent systems, and using targeted mass spectrometry approaches. Initial experiments were carried out using oxidation products generated in vitro to optimise the chromatography separation parameters and mass spectrometry parameters. We have evaluated the chromatographic separation of oxidised phosphatidylcholines (OxPCs) and oxidised phosphatidylethanolamines (OXPEs) using C8, C18 and C30 reverse phase, polystyrene – divinylbenzene based monolithic and mixed – mode hydrophilic interaction (HILIC) columns, interfaced with mass spectrometry. Our results suggest that the monolithic column was best able to separate short chain OxPCs and OxPEs from long chain oxidised and native PCs and PEs. However, variation in charge of polar head groups and extreme diversity of oxidised species make analysis of several classes of OxPLs within one analytical run impractical. We evaluated and optimised the chromatographic separation of OxPLs by serially coupling two columns: HILIC and monolith column that provided us the larger coverage of OxPL species in a single analytical run.