19 resultados para CHP

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of biomass-derived liquids (in short: bioliquids) instead of solid biomass can help overcome some of the barriers hindering a wider use of biomass in smaller-scale CHP systems. Relevant bioliquids included biodiesel, vegetable oils as well straight and upgraded pyrolysis oil. In this joint EU-Russian research project Bioliquids-CHP prime movers (engines and turbines) will be developed and modified so that these can run efficiently on bioliquids. At the same time, bioliquids will be upgraded and blended in order to facilitate their use in prime movers. Preliminary results with regard to bioliquid selection, production, and characterisation; the selection and modification of a micro gas turbine; and the development of engines and components are discussed. The research also covers NOx emission reduction and control and an assessment of the benefits and economics of bioliquids-based CHP systems in EU and Russian markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter discusses the current state of biomass-based combined heat and power (CHP) production in the UK. It presents an overview of the UK's energy policy and targets which are relevant to the deployment of biomass-based CHP and summarises the current state for renewable, biomass and CHP. A number of small-scale biomass-based CHP projects are described while providing some indicative capital costs for combustion, pyrolysis and gasification technologies. For comparison purposes, it presents an overview of the respective situation in Europe and particularly in Sweden, Finland and Denmark. There is also a brief comment about novel CHP technologies in Austria. Finally it draws some conclusions on the potential of small-scale biomass CHP in the UK. © 2011 Woodhead Publishing Limited All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast pyrolysis liquid or bio-oil has been used in engines with limited success. It requires a pilot fuel and/or an additive for successful combustion and there are problems with materials and liquid properties. It is immiscible with all conventional hydrocarbon fuels. Biodiesel, a product of esterification of vegetable oil with an alcohol, is widely used as a renewable liquid fuel as an additive to diesel at up to 20%. There are however limits to its use in conventional engines due to poor low temperature performance and variability in quality from a variety of vegetable oil qualities and variety of esterification processes. Within the European Project Bioliquids-CHP - a joint project between the European Commission and Russia - a study was undertaken to develop small scale CHP units based on engines and microturbines fuelled with bioliquids from fast pyrolysis and methyl esters of vegetable oil. Blends of bio-oil and biodiesel were evaluated and tested to overcome some of the disadvantages of using either fuel by itself. An alcohol was used as the co-solvent in the form of ethanol, 1-butanol or 2-propanol. Visual inspection of the blend homogeneity after 48 h was used as an indicator of the product stability and the results were plotted in a three phase chart for each alcohol used. An accelerated stability test was performed on selected samples in order to predict its long term stability. We concluded that the type and quantity of alcohol is critical for the blend formation and stability. Using 1-butanol gave the widest selection of stable blends, followed by blends with 2-propanol and finally ethanol, thus 1-butanol blends accepted the largest proportion of bio-oil in the mixture. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combined Heat and Power (CHP) is the simultaneous generation of usable heat and power in a single process. Despite its obvious advantages in terms of increased efficiency when compared to a single heat or power generation unit, there are a number of technical and economic reasons that have limited their selection. Biomass resources can be, and actually are used as fuel in CHP installations; however several hurdles have to be sorted beforehand, among the most important is the fact that biomass energy sources are not as energy intense as conventional CHP fuels. The ultimate outcome is a limited number of CHP units making use of biomass as fuel. Even fewer CHP units use bioliquids (e.g.: fast pyrolysis biomass liquids, biodiesel and vegetable oil). The Bioliquid-CHP project is carried out by a consortium of seven European and Russian complementary partners, funded by the EU and by the Federal Agency for Science and Innovation of the Russian Federation. The project aim is to develop microturbine and internal combustion engine adaptations in order to adjust these prime movers to bioliquids for CHP applications. This paper will show a summary of the current biomass CHP installations in the UK and the Netherlands, making reference to number of units, capacity, fuel used, the conversion technology involved and the preferred prime movers. The information will give an insight of the current market, with probable future trends and areas where growth could be expected. A similar paper describing the biomass CHP situation in Italy and Russia will be prepared in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been negligible adoption of combined heat and power (CHP) for district heating (DH) in Britain, despite continued advocacy. This thesis constructs an account of the treatment of the option, and devises a framework for explanation. Analysis of technological development and adoption, it is argued, should be similar to that of other social processes, and be subject to the same requirements and criticisms. They will, however, show features peculiar to the institutions developing and selecting technologies, their relation to different social groups, and the forms of knowledge in and about technology. Conventional approaches - organisation and interorganisation theories, and analyses of policy-making - give useful insights but have common limitations. Elements of an analytical framework situating detailed issues and outcomes in a structured historical context are derived from convergent radical critiques. Thus activity on CHP/DH is essentially shaped by the development and relations of energy sector institutions: central and local government, nationalised industries and particularly the electricity industry. Analysis of them is related to the specific character of the British state. A few CHP and DH installations were tried before 1940. During postwar reconstruction, extensive plans for several cities were abandoned or curtailed. In the 1960s and 70s, many small non-CHP DH schemes were installed on housing estates. From the mid-70s, the national potential of CHP/DH has been reappraised, with widespread support and favourable evaluations, but little practical progress. Significant CHP/DH adoption is shown to have been systematically excluded ultimately by the structure of energy provision; centralised production interests dominate and co-ordination is weak. Marginal economics and political commitment have allowed limited development in exceptional circumstances. Periods of upheaval provided greater opportunity and incentive for CHP/DH but restructuring eventually obstructed it. Explanation of these outcomes is shown to require analysis at several levels, from broad context to detailed action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the cost of electricity generation using bio-oil produced by the fast pyrolysis of UK energy crops. The study covers cost from the farm to the generator’s terminals. The use of short rotation coppice willow and miscanthus as feedstocks was investigated. All costs and performance data have been taken from published papers, reports or web sites. Generation technologies are compared at scales where they have proved economic burning other fuels, rather than at a given size. A pyrolysis yield model was developed for a bubbling fluidised bed fast pyrolysis reactor from published data to predict bio-oil yields and pyrolysis plant energy demands. Generation using diesel engines, gas turbines in open and combined cycle (CCGT) operation and steam cycle plants was considered. The use of bio-oil storage to allow the pyrolysis and generation plants to operate independently of each other was investigated. The option of using diesel generators and open cycle gas turbines for combined heat and power was examined. The possible cost reductions that could be expected through learning if the technology is widely implemented were considered. It was found that none of the systems analysed would be viable without subsidy, but with the current Renewable Obligation Scheme CCGT plants in the 200 to 350 MWe range, super-critical coal fired boilers co-fired with bio-oil, and groups of diesel engine based CHP schemes supplied by a central pyrolysis plant would be viable. It was found that the cost would reduce with implementation and the planting of more energy crops but some subsidy would still be needed to make the plants viable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: There has been a growing trend towards the use of biomass as a primary energy source, which now contributes over 54% of the European pulp and paper industry energy needs [1]. The remaining part comes from natural gas, which to a large extent serves as the major source of energy for numerous recovered fiber paper mills located in regions with limited available forest resources. The cost of producing electricity to drive paper machinery and generate heat for steam is increasing as world demand for fossil fuels increases. Additionally, recovered fiber paper mills are also significant producers of fibrous sludge and reject waste material that can contain high amounts of useful energy. Currently, a majority of these waste fractions is disposed of by landspreading, incineration, or landfill. Paper mills must also pay a gate fee to process their waste streams in this way and the result of this is a further increase in operating costs. This work has developed methods to utilize the waste fractions produced at recovered fiber paper mills for the onsite production of combined heat and power (CHP) using advanced thermal conversion methods (pyrolysis and gasification) that are well suited to relatively small scales of throughput. The electrical power created would either be used onsite to power the paper making process or alternatively exported to the national grid, and the surplus heat created could also be used onsite or exported to a local customer. The focus of this paper is to give a general overview of the project progress so far and will present the experimental results of the most successful thermal conversion trials carried out by this work to date. Application: The research provides both paper mills and energy providers with methodologies to condition their waste materials for conversion into useful energy. The research also opens up new markets for gasifier and pyrolysis equipment manufacturers and suppliers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brewers spent grain (BSG) is a widely available feedstock representing approximately 85% of the total by-products generated in the brewing industry. This is currently either disposed of to landfill or used as cattle feed due to its high protein content. BSG has received little or no attention as a potential energy resource, but increasing disposal costs and environmental constraints are now prompting the consideration of this. One possibility for the utilisation of BSG for energy is via intermediate pyrolysis to produce gases, vapours and chars. Intermediate pyrolysis is characterised by indirect heating in the absence of oxygen for short solids residence times of a few minutes, at temperatures of 350-450 °C. In the present work BSG has been characterised by chemical, proximate, ultimate and thermo-gravimetric analysis. Intermediate pyrolysis of BSG at 450 °C was carried out using a twin coaxial screw reactor known as Pyroformer to give yields of char 29%, 51% of bio-oil and 19% of permanent gases. The bio-oil liquid was found to separate in to an aqueous phase and organic phase. The organic phase contained viscous compounds that could age over time leading to solid tars that can present problems in CHP application. The quality of the pyrolysis vapour products before quenching can be upgraded to achieve much improved suitability as a fuel by downstream catalytic reforming. A Bench Scale batch pyrolysis reactor has then been used to pyrolyse small samples of BSG under a range of conditions of heating rate and temperature simulating the Pyroformer. A small catalytic reformer has been added downstream of the reactor in which the pyrolysis vapours can be further cracked and reformed. A commercial reforming nickel catalyst was used at 500, 750 and 850 °C at a space velocity about 10,000 L/h with and without the addition of steam. Results are presented for the properties of BSG, and the products of the pyrolysis process both with and without catalytic post-processing. Results indicate that catalytic reforming produced a significant increase in permanent gases mainly (H2 and CO) with H2 content exceeding 50 vol% at higher reforming temperatures. Bio-oil yield decreased significantly as reforming temperature increased with char remaining the same as pyrolysis condition remained unchanged. The process shows an increase in heating value for the product gas ranging between 10.8-25.2 MJ/m as reforming temperature increased. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary fibre paper mills are significant users of both heat and electricity which is mainly derived from the combustion of fossil fuels. The cost of producing this energy is increasing year upon year. These mills are also significant producers of fibrous sludge and reject waste material which can contain high amounts of useful energy. Currently the majority of these waste fractions are disposed of by landfill, land-spread or incineration using natural gas. These disposal methods not only present environmental problems but are also very costly. The focus of this work was to utilise the waste fractions produced at secondary fibre paper mills for the on-site production of combined heat and power (CHP) using advanced thermal conversion methods (gasification and pyrolysis), well suited to relatively small scales of throughput. The heat and power can either be used on-site or exported. The first stage of the work was the development of methods to condition selected paper industry wastes to enable thermal conversion. This stage required detailed characterisation of the waste streams in terms of proximate and ultimate analysis and heat content. Suitable methods to dry and condition the wastes in preparation for thermal conversion were also explored. Through trials at pilot scale with both fixed bed downdraft gasification and intermediate pyrolysis systems, the energy recovered from selected wastes and waste blends in the form of product gas and pyrolysis products was quantified. The optimal process routes were selected based on the experimental results, and implementation studies were carried out at the selected candidate mills. The studies consider the pre-processing of the wastes, thermal conversion, and full integration of the energy products. The final stage of work was an economic analysis to quantify economic gain, return on investment and environmental benefits from the proposed processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two main wastes generated from secondary fibre paper mills are rejects (composed mainly of plastics and fibres) and de-inking sludge, both of which are evolved from the pulping process during paper manufacture. The current practice for the disposal of these wastes is either by land-spreading or land-filling. This work explores the gasification of blends of pre-conditioned rejects and de-inking sludge pellets with mixed wood chips in an Imbert type fixed bed downdraft gasifier with a maximum feeding capacity of 10kg/h. The producer gases evolved would generate combined heat and power (CHP) in an internal combustion engine. The results show that as much as 80wt.% of a brown paper mill's rejects (consisting of 20wt.% mixed plastics and 80wt.% paper fibres) could be successfully gasified in a blend with 20wt.% mixed wood chips. The producer gas composition was 16.24% H, 23.34% CO, 12.71% CO 5.21% CH and 42.49% N (v/v%) with a higher heating value of 7.3MJ/Nm. After the removal of tar and water condensate the producer gas was of sufficient calorific value and flow rate to power a 10kWe gas engine. Some blends using rejects from other mill types were not successful, and the limiting factor was usually the agglomeration of plastics present within the fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of the pyrolysis process to obtain valuable products from biomass is amongst the technologies being investigated as a source for renewable energy. The pyrolysis process yields products such as biochar, bio-oil and non condensable gases. The main objective of this project is to increase energy recovery from sewage sludge by utilising the intermediate pyrolysis process. The intermediate pyrolysis has a residence time ranging from 5 to 10 minutes. The main product yields from sewage sludge pyrolysis are 50 wt% biochar, 40 wt% bio-oil and 10 wt% non condensable gases. The project was carried out on a pilot plant scale reactor with a load capacity of 20 kg/h. This enabled a high yield of biochar and bio-oil. The characterisation of the products indicated that the organic phase of the bio-oil had good fuel properties such as having high energy content of 39 MJ/kg, low acid number of 21.5, high flash point of 150 and viscosity of 35 cSt. An increase in pyrolysis experiments enabled large quantities of pyrolysis oil production. Co-pyrolysis of sewage sludge was carried out on laboratory scale with mixed wood, rapeseed and straw. It found that there was an increase in bio-oil quantity with rapeseed while co-pyrolysis with wood helped to mask the smell of the sludge pyrolysis oil. Engine test were successfully carried out in an old Lister engine with pyrolysis oil fractions of 30% and 50% blended with biodiesel. This indicates that these pyrolysis oil fractions can be used in similar engine types without any problems however long term effects in ordinary engines are unknown. An economic evaluation was carried out about the implementation of the intermediate pyrolysis process for electricity production in a CHP using the pyrolysis oil. The prices of electricity per kWh were found to be very high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass is projected to account for approximately half of the new energy production required to achieve the 2020 primary energy target in the UK. Combined heat and power (CHP) bioenergy systems are not only a highly efficient method of energy conversion, at smaller-scales a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost incumbent; a high carbon centralised energy system. Unidentified or unmitigated barriers occurring during the project lifecycle may not only negatively impact on the project but could ultimately lead to project failure. The research develops a decision support system (DSS) for small-scale (500 kWe to 10 MWe) biomass combustion CHP project development and risk management in the early stages of a potential project’s lifecycle. By supporting developers in the early stages of project development with financial, scheduling and risk management analysis, the research aims to reduce the barriers identified and streamline decision-making. A fuzzy methodology is also applied throughout the developed DSS to support developers in handling the uncertain or approximate information often held at the early stages of the project lifecycle. The DSS is applied to a case study of a recently failed (2011) small-scale biomass CHP project to demonstrate its applicability and benefits. The application highlights that the proposed development within the case study was not viable. Moreover, further analysis of the possible barriers with the DSS confirmed that some possible modifications to be project could have improved this, such as a possible change of feedstock to a waste or residue, addressing the unnecessary land lease cost or by increasing heat utilisation onsite. This analysis is further supported by a practitioner evaluation survey that confirms the research contribution and objectives are achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a techno-economic investigation of the generation of electricity from marine macroalgae (seaweed) in the UK (Part 1), and the production of anhydrous ammonia from synthesis gas (syngas) generated from biomass gasification (Part 2). In Part 1, the study covers the costs from macroalgae production to the generation of electricity via a CHP system. Seven scenarios, which varied the scale and production technique, were investigated to determine the most suitable scale of operation for the UK. Anaerobic digestion was established as the most suitable technology for macroalgae conversion to CHP, based on a number of criteria. All performance and cost data have been taken from published literature. None of the scenarios assessed would be economically viable under present conditions, although the use of large-scale electricity generation has more potential than small-scale localised production. Part 2 covers the costs from the delivery of the wood chip feedstock to the production of ammonia. Four cases, which varied the gasification process used and the scale of production, were investigated to determine the most suitable scale of operation for the UK. Two gasification processes were considered, these were O2-enriched air entrained flow gasification and Fast Internal Circulating Fluidised Bed. All performance and cost data have been taken from published literature, unless otherwise stated. Large-scale (1,200 tpd) ammonia production using O2-enriched air entrained flow gasification was determined as the most suitable system, producing the lowest ammonia-selling price, which was competitive to fossil fuels. Large-scale (1,200 tpd) combined natural gas/biomass syngas ammonia production also generated ammonia at a price competitive to fossil fuels.