8 resultados para CHEMICAL-REDUCTION

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using biomimetic chemical reduction or Clostridium perfringens cell extract containing azoreductase, the dimer-fluorescent probe 2,4-O-bisdansyl-6,7- diazabicyclooct-6-ene, which possesses a conformationally constrained cis-azo bridge, is reduced to the tetra-equatorial 2,4-O-bisdansyl-cyclohexyl-3,5- bisammonium salt which exhibits fluorescence indicative of a dansyl monomer. © 2012 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma or "dry" etching is an essential process for the production of modern microelectronic circuits. However, despite intensive research, many aspects of the etch process are not fully understood. The results of studies of the plasma etching of Si and Si02 in fluorine-containing discharges, and the complementary technique of plasma polymerisation are presented in this thesis. Optical emission spectroscopy with argon actinometry was used as the principle plasma diagnostic. Statistical experimental design was used to model and compare Si and Si02 etch rates in CF4 and SF6 discharges as a function of flow, pressure and power. Etch mechanisms m both systems, including the potential reduction of Si etch rates in CF4 due to fluorocarbon polymer formation, are discussed. Si etch rates in CF4 /SF6 mixtures were successfully accounted for by the models produced. Si etch rates in CF4/C2F6 and CHF3 as a function of the addition of oxygen-containing additives (02, N20 and CO2) are shown to be consistent with a simple competition between F, 0 and CFx species for Si surface sites. For the range of conditions studied, Si02 etch rates were not dependent on F-atom concentration, but the presence of fluorine was essential in order to achieve significant etch rates. The influence of a wide range of electrode materials on the etch rate of Si and Si02 in CF4 and CF4 /02 plasmas was studied. It was found that the Si etch rate in a CF4 plasma was considerably enhanced, relative to an anodised aluminium electrode, in the presence of soda glass or sodium or potassium "doped" quartz. The effect was even more pronounced in a CF4 /02 discharge. In the latter system lead and copper electrodes also enhanced the Si etch rate. These results could not be accounted for by a corresponding rise in atomic fluorine concentration. Three possible etch enhancement mechanisms are discussed. Fluorocarbon polymer deposition was studied, both because of its relevance to etch mechanisms and its intrinsic interest, as a function of fluorocarbon source gas (CF4, C2F6, C3F8 and CHF3), process time, RF power and percentage hydrogen addition. Gas phase concentrations of F, H and CF2 were measured by optical emission spectroscopy, and the resultant polymer structure determined by X-ray photoelectron spectroscopy and infrared spectroscopy. Thermal and electrical properties were measured also. Hydrogen additions are shown to have a dominant role in determining deposition rate and polymer composition. A qualitative description of the polymer growth mechanism is presented which accounts for both changes in growth rate and structure, and leads to an empirical deposition rate model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was concerned with identifying factors which may influence human reliability within chemical process plants - these factors are referred to as Performance Shaping Factors (PSFs). Following a period of familiarization within the industry, a number of case studies were undertaken covering a range of basic influencing factors. Plant records and site `lost time incident reports' were also used as supporting evidence for identifying and classifying PSFs. In parallel to the investigative research, the available literature appertaining to human reliability assessment and PSFs was considered in relation to the chemical process plan environment. As a direct result of this work, a PSF classification structure has been produced with an accompanying detailed listing. Phase two of the research considered the identification of important individual PSFs for specific situations. Based on the experience and data gained during phase one, it emerged that certain generic features of a task influenced PSF relevance. This led to the establishment of a finite set of generic task groups and response types. Similarly, certain PSFs influence some human errors more than others. The result was a set of error type key words, plus the identification and classification of error causes with their underlying error mechanisms. By linking all these aspects together, a comprehensive methodology has been forwarded as the basis of a computerized aid for system designers. To recapitulate, the major results of this research have been: One, the development of a comprehensive PSF listing specifically for the chemical process industries with a classification structure that facilitates future updates; and two, a model of identifying relevant SPFs and their order of priority. Future requirements are the evaluation of the PSF listing and the identification method. The latter must be considered both in terms of `useability' and its success as a design enhancer, in terms of an observable reduction in important human errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automotive catalysts are the most effective short-term answer to air pollution from automobiles. Since strict control of exhaust emissions is, or will be,covered by legislation in most developed countries in the world, catalytic devices will be increasingly fitted to cars. There is consequently an urgent need for the development of catalysts that will not compete for scarce precious metal resources. A number of problems have already been identified in connection with base metal catalysts but quantitative investigations are lacking. The base metal reduction catalysts developed by Imperial Chemical Industries Limited, catalysts and Chemical Group, in collaboration with the Air Pollution Control Laboratory, B L Cars Limited for automotive emission control, are susceptible to de-activation by three major mechanisms. These are: physical loss of the wash-coat (a high surface area coating which supports the active species), aggregation of the active species and poisoning by fuel and engine oil additives. This thesis is especially concerned with the first two of these and attempts to indicate the relative magnitude .of their effect on the activity of. the catalysts. Aggregation of the active species or sintering, as it is loosely called, was studied by using impregnated granules to overcome effects due to the loss of the wash-coat. Samples were aged in a synthetic exhaust gas, free from poisons, and metal crystallite sizes were measured by scanning-electron microscopy. The increase in particle size was correlated with the loss in catalytic activity. In order to maintain a link with the real conditions of service a number of monolithic catalysts were tested in an engine-dynamometer and several previously tested endurance catalysts were examined. A mechanism is proposed for the break-up and subsequent 10s.5 of the wash-coat and suggestions for improved resistance to loss of the' coating and active species are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-situ, synchronous MS/XANES reveals the Pd catalyzed selective aerobic oxidation of crotyl alcohol is regulated by the balance between the oxidation state and reducibility. Dynamic XANES measurements provide a new, rapid method to determine redox kinetics of nanoparticles and identify important parameters to optimize catalyst design. © 2012 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torrefaction experiments were carried out for three typical South African biomass samples (softwood chips, hardwood chips and sweet sorghum bagasse) to a weight loss of 30wt.%. During torrefaction, moisture, non-structural carbohydrates and hemicelluloses were reduced, resulting in a structurally modified torrefaction product. There was a reduction in the average crystalline diameter (La) (XRD), an increase in the aromatic fraction and a reduction in aliphatics (substituted and unsubstituted) (CPMAS 13C NMR). The decrease in the aliphatic components of the lignocellulosic material under the torrefaction conditions also resulted in a slight ordering of the carbon lattice. The degradation of hemicelluloses and non-structural carbohydrates increased the inclusive surface area of sweet sorghum bagasse, while it did not change significantly for the woody biomasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs. © 2013 American Institute of Physics.