13 resultados para CHEMICAL SENSORS

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Common problems encountered in clinical sensing are those of non-biocompatibility, and slow response time of the device. The latter, also applying to chemical sensors, is possibly due to a lack of understanding of polymer support or membrane properties and hence failure to optimise membranes chosen for specific sensor applications. Hydrogels can be described as polymers which swell in water. In addition to this, the presence of water in the polymer matrix offers some control of biocompatibility. They thus provide a medium through which rapid transport of a sensed species to an incorporated reagent could occur. This work considers the feasibility of such a system, leading to the design and construction of an optical sensor test bed. The development of suitable membrane systems and of suitable coating techniques in order to apply them to the fibre optics is described. Initial results obtained from hydrogel coatings implied that the refractive index change in the polymer matrix, due to a change in water content with pH is the major factor contributing to the sensor response. However the presence of the colourimetric reagent was also altering the output signal obtained. An analysis of factors contributing to the overall response, such as colour change and membrane composition were made on both the test bed, via optical response, and on whole membranes via measurement of water content change. The investigation of coatings with low equilibrium water contents, of less than 10% was carried out and in fact a clearer signal response from the test bed was noted. Again these membranes were suprisingly responding via refractive index change, with the reagent playing a primary role in obtaining a sensible or non-random response, although not in a colourimetric fashion. A photographic study of these coatings revealed some clues as to the physical nature of these coatings and hence partially explained this phenomenon. A study of the transport properties of the most successful membrane, on a coated wire electrode and also on the fibre optic test bed, in a series of test environments, indicated that the reagent was possibly acting as an ion exchanger and hence having a major influence on transport and therefore sensor characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here the fabrication, charaterisation and refractive index sensing of two microchanneled chirped fiber Bragg gratings (MCFBGs) with different channel sizes (~550µm and ~1000µm). The chirped grating structures were UV-inscribed in optical fibre and the microchannels were created in the middle of the CFBGs by femtosecond (fs) laser assisted chemical etching method. The creation of microchannels in the CFBG structures gives an access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In comparison with previously reported FBG based RI sensors, for which the cladding layers usually were removed, the MCFBGs represent a more ideal solution for robust devices as the microchannel will not degrade the structure strength. The two MCFBGs were spectrally charaterised for their RI and temperature responses and both gratings exhibited unique thermal and RI sensitivities, which may be utilised for implementation of bio-chemical sensors with capability to eliminate temperature crosssensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here the fabrication, charaterisation and refractive index sensing of two microchanneled chirped fiber Bragg gratings (MCFBGs) with different channel sizes (~550µm and ~1000µm). The chirped grating structures were UV-inscribed in optical fibre and the microchannels were created in the middle of the CFBGs by femtosecond (fs) laser assisted chemical etching method. The creation of microchannels in the CFBG structures gives an access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In comparison with previously reported FBG based RI sensors, for which the cladding layers usually were removed, the MCFBGs represent a more ideal solution for robust devices as the microchannel will not degrade the structure strength. The two MCFBGs were spectrally charaterised for their RI and temperature responses and both gratings exhibited unique thermal and RI sensitivities, which may be utilised for implementation of bio-chemical sensors with capability to eliminate temperature crosssensitivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of surface plasmonic fibre devices were fabricated by depositing multiple thin coatings on a lapped section of a standard single mode telecoms fibre forming a D-shaped section and then inscribing a grating-type structure using UV light. The coatings consisted of base coatings of semi-conductor (germanium) and dielectric (silicon dioxide) materials, followed by different metals. These fibre devices showed high spectral refractive index sensitivity with high coupling efficiency in excess of 40 dB for indices in the aqueous regime and below, with estimated index sensitivities of Lambda lambda/Lambda n = 90-800 nm from 1 to 1.15 index range and Lambda lambda/Lambda n = 1200-4000 nm for refractive indices from 1.33 to 1.39. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the study of various grating based optical fibre sensors for applications in refractive index sensing. The sensitivity of these sensors has been studied and in some cases enhanced using novel techniques. The major areas of development are as follows. The sensitivity of long period gratings (LPGs) to surrounding medium refractive index (SRI) for various periods was investigated. The most sensitive period of LPG was found to be around 160 µm and this was due to the core mode coupling to a single cladding mode but phase matching at two wavelength locations, creating two attenuation peaks, close to the waveguide dispersion turning point. Large angle tilted fibre gratings (TFGs) have similar behaviour to LPGs, in that they couple to the co-propagating cladding modes. The tilted structure of the index modulation within the core of the fibre gives rise to a polarisation dependency, differing the large angle TFG from a LPG. Since the large angle TFG couple to the cladding mode they are SRI sensitive, the sensitivity to SRI can be further increased through cladding etching using HF acid. The thinning of the cladding layer caused a reordering of the cladding modes and shifted to more SRI sensitive cladding modes as the investigation discovered. In a SRI range of 1.36 to 1.40 a sensitivity of 506.9 nm/URI was achieved for the etched large angle TFG, which is greater than the dual resonance LPG. UV inscribed LPGs were coated with sol-gel materials with high RIs. The high RI of the coating caused an increase in cladding mode effective index which in turn caused an increase in the LPG sensitivity to SRI. LPGs of various periods of LPG were coated with sol-gel TiO2 and the optimal thickness was found to vary for each period. By coating of the already highly SRI sensitive 160µm period LPG (which is a dual resonance) with a sol-gel TiO2, the SRI sensitivity was further increased with a peak value of 1458 nm/URI, which was an almost 3 fold increase compared to the uncoated LPG. LPGs were also inscribed using a femtosecond laser which produced a highly focused index change which was no uniform throughout the core of the optical fibre. The inscription technique gave rise to a large polarisation sensitivity and the ability to couple to multiple azimuthal cladding mode sets, not seen with uniform UV inscribed gratings. Through coupling of the core mode to multiple sets of cladding modes, attenuation peaks with opposite wavelength shifts for increasing SRI was observed. Through combining this opposite wavelength shifts, a SRI sensitivity was achieved greater than any single observed attenuations peak. The maximum SRI achieved was 1680 nm/URI for a femtosecond inscribed LPG of period 400 µm. Three different types of surface plasmon resonance (SPR) sensors with a multilayer metal top coating were investigated in D shape optical fibre. The sensors could be separated into two types, utilized a pre UV inscribed tilted Bragg grating and the other employed a post UV exposure to generate surface relief grating structure. This surface perturbation aided the out coupling of light from the core but also changed the sensing mechanism from SPR to localised surface plasmon resonance (LSPR). This greatly increased the SRI sensitivity, compared to the SPR sensors; with the gold coated top layer surface relief sensor producing the largest SRI sensitivity of 2111.5nm/URI was achieved. While, the platinum and silver coated top layer surface relief sensors also gave high SRI sensitivities but also the ability to produce resonances in air (not previously seen with the SPR sensors). These properties were employed in two applications. The silver and platinum surface relief devices were used as gas sensors and were shown to be capable of detecting the minute RI change of different gases. The calculated maximum sensitivities produced were 1882.1dB/URI and 1493.5nm/URI for silver and platinum, respectively. Using a DFB laser and power meter a cheap alternative approach was investigated which showed the ability of the sensors to distinguish between different gases and flow rates of those gases. The gold surface relief sensor was coated in a with a bio compound called an aptamer and it was able to detect various concentrations of a biological compound called Thrombin, ranging from 1mM to as low as 10fM. A solution of 2M NaCl was found to give the best stripping results for Thrombin from the aptamer and showed the reusability of the sensor. The association and disassociation constants were calculated to be 1.0638×106Ms-1 and 0.2482s-1, respectively, showing the high affinity of the Aptamer to thrombin. This supports existing working stating that aptamers could be alternative to enzymes for chemical detection and also helps to explain the low detection limit of the gold surface relief sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a new concept of biochemical sensor device based on long-period grating structures UV-inscribed in D-fiber. The surrounding-medium refractive index sensitivity of the devices has been enhanced significantly by a hydrofluoric acid etching process. The devices have been used to measure the sugar concentrations showing clearly an encoding relation between the chemical concentration and the grating spectral response, demonstrating their capability for potential biochemical sensing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a graphene oxide-coated long period fibre grating (GO-LPG) is proposed for chemical sensing application. Graphene oxide (GO) has been deposited on the surface of long period grating to form a sensing layer which significantly enhances the interaction between LPG propagating light and the surrounding-medium. The sensing mechanism of GO-LPG relies on the change of grating resonance intensity against surrounding-medium refractive index (SRI). The proposed GO-LPG has been used to measure the concentrations of sugar aqueous solutions. The refractive index sensitivities with 99.5 dB/RIU in low refractive index region (1.33-1.35) and 320.6 dB/RIU in high index region (1.42-1.44) have been achieved, showing an enhancement by a factor of 3.2 and 6.8 for low and high index regions, respectively. The proposed GO-LPG can be further extended to the development of optical biochemical sensor with advantages of high sensitivity, real-time and label-free sensing.