5 resultados para CHARCOAL

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replacement of diesel fuel by ultra-carbofluids was perceived to offer the potential to decrease the emissions of environmental pollutants such as carbon dioxide, carbon monoxide, hydrocarbons (HC's) and smoke. Such ultracarbofluids consist of a suspension of coal in fuel oil and water generally in the ratio of 5: 3: 2 plus a small amount of stabilising additive. The literature relating to the economies of coal and fuel oil production, and the production and properties of charcoal and vegetable oils has been critically reviewed. The potential use of charcoal and vegetable oils as replacements for coal and fuel oil are discussed. An experimental investigation was undertaken using novel bio-ultracarbofluid formulations. These differed from an ultracarbofluid by having bio-renewable charcoal and vegetable oil in place of coal and fuel oil. Tests were made with a Lister-Petter 600cc 2-cylinder, 4-stroke diesel engine fitted with a Heenan-Froude DPX 1 water brake dynamometer to measure brake power output, and Mexa-321E and Mexa-211E analysers to measure exhaust pollutants. Measurements were made of engine brake power output, carbon dioxide, carbon monoxide, hydrocarbons and smoke emissions over the speed range 1000 to 3000 rpm at 200 rpm intervals. The results were compared with those obtained with a standard diesel reference fuel. All the bio-ultracarbofluid formulations produced lower brake power outputs (i.e. 5.6% to 20.7% less brake power) but substantially improved exhaust emissions of CO2, CO, HC's and smoke. The major factor in the formulation was found to be the type and amount of charcoal; charcoal with a high volatile content (27.2%) and present at 30% by mass yielded the best results, i.e. only slightly lower brake power output and significantly lower exhaust pollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensitive and precise radioimmunoassays for insulin and glucagon have been established. Although it was possible to employ similar precepts to the development of both hormone assays, the establishment of a reliable glucagon radioimmunoassay was complicated by the poor immunogenicity and instability of the peptide. Thus, unlike insulin antisera which were prepared by monthly injection of guinea pigs with crystalline insulin emulsified in adjuvant, the successful production of glucagon antisera was accomplished by immunisation of rabbits and guinea pigs with glucagon covalently linked to bovine plasma albumin. The conventional chloramine-T iodination with purification by gel chromatography was only suitable for the production of labelled insulin. Quality tracer for use in the glucagon radioimmunoassay was prepared by trace iodination, with subsequent purification of monoiodinated glucagon by anion exchange chromatography. Separation of free and antibody bound moieties by coated charcoal was applicable to both hormone assays, and a computerised data processing system, relying on logit-log transformation, was used to analyse all assay results. The assays were employed to evaluate the regulation of endocrine pancreatic function and the role of insulin and glucagon in the pathogenesis of the obese hyperglycaemic syndrome in mice. In the homozygous (ob/ob) condition, mice of the Birmingham strain were characterised by numerous abnormalities of glucose homeostasis, several of which were detected in heterozygous (ob/+) mice. Obese mice exhibited pancreatic alpha cell dysfunction and hyperglucagonaemia. Investigation of this defect revealed a marked insensitivity of an insulin dependent glucose sensing mechanism that inhibited glucagon secretion. Although circulating glucagon was of minor importance in the maintenance of hyperinsulinaemia, lack of suppression of alpha cell function by glucose and insulin contributed significantly to both the insulin insensitivity and the hyperglycaemia of obese mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is a review of the findings of key studies into the potential benefits of pyroligneous acid, arising from charcoal production, to the agricultural industry. Through a review of bioassay studies conducted on known plant and human pathogens (e.g., Agrobacterium tumefacien and Xanthomonas campestris) and arthropods, and germination studies on selected crops, the article highlights a number of potential benefits of smoke recovery in the production of charcoal. In addition, the article calls for further research into the impact, if any, of its long-term use on environmental receptors/humans and for the development of a methodology to guarantee consistency in product composition, quality, and efficacy. In doing so, it is hoped that its widespread use as part of sustainable management practices adopted in the agricultural industry will be secured.