3 resultados para CFX
em Aston University Research Archive
CFD Modellierung einer partikelbelasteten Kühlmittelströmung im Sumpf und in der Kondensationskammer
Resumo:
Der Bericht beschreibt die Arbeiten zur CFD-Modellentwicklung zur Beschreibung des Fasertransportes in einer Wasserströmung, die im Unterauftrag der Hochschule Zittau/Görlitz erfolgten. Während die experimentellen Arbeiten zu dieser Thematik in Zittau durchgeführt wurden, lag der Schwerpunkt der theoretischen Arbeiten in Rossendorf. Im Arbeitspunkt EZ 1 des Projektantrages ist die Erweiterung der Einzeleffektuntersuchungen vorgesehen. Die entsprechenden Modellansätze zum Partikeltransport sind im Kapitel 3.1. beschrieben. Die Modellanpassung und Validierung ist in 3.2 und 3.3 dargestellt. Der Fasertransport in einer Wasserströmung wird durch Jet-Phänomene bestimmt. Untersuchungen dazu sind im EZ3.1 des Projektantrages: „3D-Phänomene infolge Blasenmitriss“ vorgesehen und die Modellansätze und der Vergleich zu Experimenten in den Kapiteln 4.1 bis 4.3 dargestellt. Des Weiteren wird der Einfluss auf den Ausgleich der Temperatur für den Fall untersucht, dass der Jet kälter als die Wasservorlage im Tank ist. Dieser Abschnitt entspricht damit der EZ3.2 des Antrages: „3D-Phänomene infolge Temperaturdifferenzen. Im Kapitel 4.4 wird auf die Strömungsvorgänge in der Zittauer Strömungswanne eingegangen und damit der Punkt EZ4 des Antrages: Integraluntersuchungen bearbeitet. Kapitel 5 beschreibt die Entwicklung eines Sieb-Modells, das die Faser-Kompaktierung berücksichtigt und auf der Darcy-Gleichung basiert. Die Modellparameter werden an Experimenten in Zittau justiert. Diese Experimente wurden für verschiedene Materialien durchgeführt und mit deren Hilfe ein Koeffizientenkatalog erstellt. Das Modell wurde in den CFD-Code CFX implementiert und anhand einiger Anwendungsbeispiele demonstriert.
Resumo:
Plasma or "dry" etching is an essential process for the production of modern microelectronic circuits. However, despite intensive research, many aspects of the etch process are not fully understood. The results of studies of the plasma etching of Si and Si02 in fluorine-containing discharges, and the complementary technique of plasma polymerisation are presented in this thesis. Optical emission spectroscopy with argon actinometry was used as the principle plasma diagnostic. Statistical experimental design was used to model and compare Si and Si02 etch rates in CF4 and SF6 discharges as a function of flow, pressure and power. Etch mechanisms m both systems, including the potential reduction of Si etch rates in CF4 due to fluorocarbon polymer formation, are discussed. Si etch rates in CF4 /SF6 mixtures were successfully accounted for by the models produced. Si etch rates in CF4/C2F6 and CHF3 as a function of the addition of oxygen-containing additives (02, N20 and CO2) are shown to be consistent with a simple competition between F, 0 and CFx species for Si surface sites. For the range of conditions studied, Si02 etch rates were not dependent on F-atom concentration, but the presence of fluorine was essential in order to achieve significant etch rates. The influence of a wide range of electrode materials on the etch rate of Si and Si02 in CF4 and CF4 /02 plasmas was studied. It was found that the Si etch rate in a CF4 plasma was considerably enhanced, relative to an anodised aluminium electrode, in the presence of soda glass or sodium or potassium "doped" quartz. The effect was even more pronounced in a CF4 /02 discharge. In the latter system lead and copper electrodes also enhanced the Si etch rate. These results could not be accounted for by a corresponding rise in atomic fluorine concentration. Three possible etch enhancement mechanisms are discussed. Fluorocarbon polymer deposition was studied, both because of its relevance to etch mechanisms and its intrinsic interest, as a function of fluorocarbon source gas (CF4, C2F6, C3F8 and CHF3), process time, RF power and percentage hydrogen addition. Gas phase concentrations of F, H and CF2 were measured by optical emission spectroscopy, and the resultant polymer structure determined by X-ray photoelectron spectroscopy and infrared spectroscopy. Thermal and electrical properties were measured also. Hydrogen additions are shown to have a dominant role in determining deposition rate and polymer composition. A qualitative description of the polymer growth mechanism is presented which accounts for both changes in growth rate and structure, and leads to an empirical deposition rate model.
Resumo:
This thesis presents an effective methodology for the generation of a simulation which can be used to increase the understanding of viscous fluid processing equipment and aid in their development, design and optimisation. The Hampden RAPRA Torque Rheometer internal batch twin rotor mixer has been simulated with a view to establishing model accuracies, limitations, practicalities and uses. As this research progressed, via the analyses several 'snap-shot' analysis of several rotor configurations using the commercial code Polyflow, it was evident that the model was of some worth and its predictions are in good agreement with the validation experiments, however, several major restrictions were identified. These included poor element form, high man-hour requirements for the construction of each geometry and the absence of the transient term in these models. All, or at least some, of these limitations apply to the numerous attempts to model internal mixes by other researchers and it was clear that there was no generally accepted methodology to provide a practical three-dimensional model which has been adequately validated. This research, unlike others, presents a full complex three-dimensional, transient, non-isothermal, generalised non-Newtonian simulation with wall slip which overcomes these limitations using unmatched ridding and sliding mesh technology adapted from CFX codes. This method yields good element form and, since only one geometry has to be constructed to represent the entire rotor cycle, is extremely beneficial for detailed flow field analysis when used in conjunction with user defined programmes and automatic geometry parameterisation (AGP), and improves accuracy for investigating equipment design and operation conditions. Model validation has been identified as an area which has been neglected by other researchers in this field, especially for time dependent geometries, and has been rigorously pursued in terms of qualitative and quantitative velocity vector analysis of the isothermal, full fill mixing of generalised non-Newtonian fluids, as well as torque comparison, with a relatively high degree of success. This indicates that CFD models of this type can be accurate and perhaps have not been validated to this extent previously because of the inherent difficulties arising from most real processes.