21 resultados para CELL-VOLUME REGULATION

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. During osmotic swelling, cultured osteoblastic cells (ROS 17/2.8) exhibited activation of large amplitude Cl- currents in the whole-cell configuration of the patch-clamp technique. Effects of hypotonic shock on cell volume and membrane conductance were rapidly reversed on return to isotonic conditions. 2. Voltage command pulses in the range -80 to +50 mV produce instantaneous activation of Cl- currents. At potentials more positive than +50 mV the current exhibited time-dependent inactivation. The instantaneous current-voltage relationship was outwardly rectifying. 3. The anion permeability sequence of the induced current was SCN- (2.2) > I- (1.9) > Br- (1.5) > Cl- (1.0) > F- (0.8) > gluconate- (0.2). This corresponds to Eisenman's sequence I. 4. The volume-sensitive Cl- current was effectively inhibited by the Cl- channel blockers 4,4'-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). Outward currents were more effectively suppressed by DIDS than inward currents. The concentrations for 50% inhibition (IC50) of outward and inward currents were 81 and 298 μM, respectively. NPPB was equally effective at inhibiting outward and inward currents (IC50 of 64 μM). The current was relatively insensitive to diphenylamine-2-carboxylate (DPC), 500 μM producing only 22.5 ± 4.0% inhibition. 5. Inhibitors of protein kinase A (H-89, 1 μM) and tyrosine kinase (tyrphostin A25, 200 μM) were without effect upon activation of Cl- currents in response to hypotonic shock. Under isotonic conditions, elevation of intracellular Ca2+ by ionomycin (1 μM) or activation of protein kinase C by 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.1 μM) failed to evoke increases in basal Cl- conductance levels. 6. It is concluded that an outwardly rectifying Cl- conductance is activated upon osmotic swelling and may be involved in cell volume regulation of ROS 17/2.8 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of hypotonic shock upon membrane C1 permeability of ROS 17/2.8 osteoblast-like cells was investigated using the patch-clamp technique. Hypotonic shock produced cell swelling that was accompanied by large amplitude, outwardly rectifying, currents that were active across the entire physiological range of membrane potentials (-80 to +100 mV). At strong depolarisations (> +50 mV) the currents exhibited time-dependent inactivation that followed a monoexponential time course. The currents were anion selective and exhibited a selectivity sequence of SCN- > I > Br- > Cl- > F- > gluconate. Current activation was unaffected by inhibitors of protein kinase (A (H-89) and tyrosine kinase (tyrphostin A25), and could not be mimicked by elevation of intracellular Ca2+ or activation of protein kinase C. Similarly, disruption of actin filaments by dihydrocytochalsin B, or generation of membrane tension by dipyridamole failed to elicit significant increases in cell chloride permeability. The mechanism of current activation is as yet undetermined. The currents were effectively inhibited by the chloride channel inhibitors NPPB and DIDS but resistant to DPC. A Cl- conductance with similar characteristics was found to be present in mouse primary cultured calvarial osteoblasts. The volume-sensitive Cl- current in ROS 17/2.8 cells was inhibited by arachidonic acid in two distinct phases. A rapid block that developed within 10 s, preceding a slower developing inhibitory phase that occurred approximately 90 s after onset of arachidonate superfusion. Arachidonic acid also induced kinetic modifications of the current which were evident as an acceleration of the time-dependent· inactivation exhibited at depolarised potentials. Inhibitors of cyclo-oxygenases, lipoxygenases and cytochrome P-4S0 were ineffectual against arachidonic acid's effects sugtgesting that arachidonic acid may elicit it's effects directly. Measurements of cell volume under hypotonic conditions showed that ROS 17/2,8 cells could effectively regulate their volume, However, effective inhibitors of the volume-sensitive CI" current drastically impaired this response suggesting that physiologically this current may have a vital role in cell volume regulation, In L6 skeletal myocytes, vasopressin was found to rapidiy hyperpolarise cells. This appears to occur as the result of activation of Ca2+ -sensitive K+ channels in a process dependent upon the presence of extracellular Ca2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endothelium produces and responds to reactive oxygen and nitrogen species (RONS), providing important redox regulation to the cardiovascular system in physiology and disease. In no other situation are RONS more critical than in the response to tissue ischemia. Here, tissue healing requires growth factor-mediated angiogenesis that is in part dependent on low levels of RONS, which paradoxically must overcome the damaging effects of high levels of RONS generated as a result of ischemia. While generation of endothelial cell RONS in hypoxia/reoxygenation is acknowledged, the mechanism for their role in angiogenesis is still poorly understood. During ischemia, the major low molecular weight thiol glutathione (GSH) reacts with RONS and protein cysteines, producing GSH-protein adducts. Recent data indicate that GSH adducts on certain proteins are essential to growth factor responses in endothelial cells. Genetic deletion of the enzyme glutaredoxin-1, which selectively removes GSH protein adducts, improves, while its overexpression impairs, revascularization of the ischemic hindlimb of mice. Ischemia-induced GSH adducts on specific cysteine residues of several proteins, including p65 NFkB and the sarcoplasmic reticulum calcium ATPase-2 (SERCA2), appear to promote ischemic angiogenesis. Identifying the specific proteins in the redox response to ischemia has provided therapeutic opportunities to improve clinical outcomes of ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The family's structural features and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this has only been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations, through transient receptor potential channels, that trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly-changing local cellular water availability. Moreover, since calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. Scope of review - AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. Major conclusions - AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. General significance - Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. Scope of review - AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. Major conclusions - As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. General significance - Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The effects of arachidonic acid upon the volume-sensitive Cl- current present in cultured osteoblastic cells (ROS 17/2.8) was studied using the whole-cell patch-clamp technique. 2. Arachidonate produced two distinct phases of inhibition, a rapid phase occurring within 10-15 s of application preceding a slower phase that occurred 2 min after onset of arachidonate superfusion. Accompanying the slower inhibitory phase was an acceleration of the time-dependent inactivation exhibited by the current at strongly depolarized potentials (> + 50 mV). The half-maximal inhibitory concentrations (IC50) were 177 +/- 31 and 10 +/- 4 microM for the two phases respectively. 3. Arachidonate was still effective in the presence of inhibitors of cyclo-oxygenase (indomethacin, 10 microM), lipoxygenase (nordihydroguaretic acid, 10-100 microM) and cytochrome P450 (SKF525A, 100 microM; ethoxyresorufin, 10 microM; metyrapone, 500 microM; piperonyl butoxide, 500 microM; cimetidine, 1 mM). The effects of arachidonate could not be produced by another cis unsaturated fatty acid, oleic acid. 4. Measurements of cell volume showed that arachidonate effectively inhibited the regulatory volume decrease elicited by ROS 17/2.8 cells in response to a reduction in extracellular osmolarity. 5. It is concluded that the volume-sensitive Cl- conductance in ROS 17/2.8 cells is directly modulated by arachidonate and may represent a physiological mechanism by which volume regulation can be controlled in these cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Apoptosis is a highly controlled cell death programme that culminates in the exposure of molecular ‘flags’ at the dying cell surface that permit recognition and removal by viable phagocytes. Failure to efficiently remove dying cells can lead to devastating inflammatory and autoimmune disorders. The molecular mechanisms underlying apoptotic cell surface changes are poorly understood. Our previous work has shown an apoptosis-associated functional change in ICAM-3 (a heavily glycosylated, leukocyte-restricted Immunoglobulin Super-Family member) resulting in a molecular ‘flag’ to mediate corpse removal. Here we detail apoptosis-associated changes in ICAM-3 and define their role in ICAM-3’s novel function in apoptotic cell clearance. We show ICAM-3 functions to tether apoptotic leukocytes to macrophages via an undefined receptor. Though CD14 has been suggested as a possible receptor for apoptotic cell-associated ICAM-3, we demonstrate ICAM-3 functions for apoptotic cell clearance in the absence of CD14. Furthermore, we demonstrate leukocytes display early changes in cell surface glycosylation and a marked reduction in ICAM-3, a change that correlates reduced cell volume throughout apoptosis. This loss of ICAM-3 occurs via shedding of ICAM-3 in microparticles (‘apoptotic bodies’). Such microparticles are potent chemoattractants for macrophages. Notably, microparticles from ICAM-3-deficient leukocytes are significantly less chemoattractive than microparticles from their ICAM-3-replete counterparts. These data support the hypothesis that ICAM-3 acts as an apoptotic cell-associated ligand to tether dying cells to phagocytes in a CD14-independent manner. Furthermore our data suggest that released ICAM-3 may promote the recruitment of phagocytes to sites of apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Damaged, aged or unwanted cells are removed from the body by an active process known as apoptosis. This highly orchestrated programme results in cell disassembly and the exposure of ‘flags’ at the dying cell surface that permit recognition and removal by viable cells (phagocytes). Efficient phagocytic removal of dying cells is essential to prevent inflammatory and autoimmune disorders. Relatively little is known of the molecular mechanisms underlying changes at the apoptotic cell surface. We have previously shown that ICAM-3 (a heavily glycosylated, leukocyte-restricted Immunoglobulin Super-Family member) undergoes a change of function as cells die so that it acts as a molecular ‘flag’ to mediate corpse removal. Our work seeks to characterise apoptosis-associated changes in ICAM-3 and define their role in ICAM-3’s novel function in apoptotic cell clearance. Here we extend earlier studies to show that apoptotic cell-associated ICAM-3 functions, at least minimally, to tether apoptotic leukocytes to macrophages via an undefined receptor. Whilst CD14 has been suggested as a possible innate immune receptor for apoptotic cell-associated ICAM-3, we demonstrate ICAM-3 functions for apoptotic cell clearance in the absence of CD14. Our data additionally indicate, that during apoptosis, leukocytes display early changes in cell surface glycosylation and a marked reduction in ICAM-3, a change that correlates with a reduction in cell volume. This reduction in ICAM-3 is explained by cell surface shedding of microparticles (‘apoptotic bodies’) that contain ICAM-3. Such microparticles, released from apoptotic leukocytes, are strongly chemoattractive for macrophages. In addition, microparticles from ICAM-3-deficient leukocytes are significantly less chemoattractive than microparticles from their ICAM-3-replete counterparts. Taken together these data support the hypothesis that ICAM-3 acts as an apoptotic cell-associated ligand to tether dying cells to phagocytes in a CD14-independent manner. Furthermore our data suggest that released ICAM-3 may promote the recruitment of phagocytes to sites of leukocyte apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Damaged, aged or unwanted cells are removed from the body by an active process known as apoptosis. This highly orchestrated programme results in cell disassembly and the exposure of ‘flags’ at the dying cell surface that permit recognition and removal by viable cells (phagocytes). Efficient phagocytic removal of dying cells is essential to prevent inflammatory and autoimmune disorders. Relatively little is known of the molecular mechanisms underlying changes at the apoptotic cell surface. We have previously shown that ICAM-3 (a heavily glycosylated, leukocyte-restricted Immunoglobulin Super-Family member) undergoes a change of function as cells die so that it acts as a molecular ‘flag’ to mediate corpse removal. Our work seeks to characterise apoptosis-associated changes in ICAM-3 and define their role in ICAM-3’s novel function in apoptotic cell clearance. Here we extend earlier studies to show that apoptotic cell-associated ICAM-3 functions, at least minimally, to tether apoptotic leukocytes to macrophages via an undefined receptor. Whilst CD14 has been suggested as a possible innate immune receptor for apoptotic cell-associated ICAM-3, we demonstrate ICAM-3 functions for apoptotic cell clearance in the absence of CD14. Our data additionally indicate, that during apoptosis, leukocytes display early changes in cell surface glycosylation and a marked reduction in ICAM-3, a change that correlates with a reduction in cell volume. This reduction in ICAM-3 is explained by cell surface shedding of microparticles (‘apoptotic bodies’) that contain ICAM-3. Such microparticles, released from apoptotic leukocytes, are strongly chemoattractive for macrophages. In addition, microparticles from ICAM-3-deficient leukocytes are significantly less chemoattractive than microparticles from their ICAM-3-replete counterparts. Taken together these data support the hypothesis that ICAM-3 acts as an apoptotic cell-associated ligand to tether dying cells to phagocytes in a CD14-independent manner. Furthermore our data suggest that released ICAM-3 may promote the recruitment of phagocytes to sites of leukocyte apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The incubation of murine leukaemic L1210 cells in vitro for 4 hours (hr) with 10uM nitrogen mustard (HN2), a bifunctional alkylating agent, inhibited the influx of the potassium congener, 88rubidium+ ( 86Rb+) by the selective inhibition of the Na+-K+-CI- cotransporter. The aim of this project was to investigate the importance of this lesion in HN2-induced cytotoxicity. 86Rb+ uptake in human erythrocytes was inhibited by high concentrations of HN2 (2mM) and occurred in two phases.In the first hour both the Na+/K+ ATPase pump and the Na+-K+-CI- cotransporter were equally inhibited but after 2 hrs exposure to 2mM HN2, the Na+ -K+ -CI- cotransporter was significantly more inhibited than the Na+/K+ ATPase pump. In contrast, both potassium transport systems were equally inhibited in L1210 cells incubated for 10 minutes with 1mM HN2. The selective inhibition of the Na+-K+-CI- cotransporter, after a 3 hrs exposure to 10uM HN2, was not absolved by coincubation with 5ug/ml cycloheximide (CHX), an inhibitor of protein synthesis. Incubation of L1210 cells with concentrations of diuretics which completely inhibited Na+-K+-CI- cotransport did not enhance the cytotoxicity of either HN2 or its monofunctional analogue 2-chloroethyldimethylamine (Me-HN1). The incubation of L1210 cells with a twice strength Rosewell Park Memorial Institute 1640 media did not enhance the toxicity of HN2. An L1210 cell line (L1210FR) was prepared which was able to grow in toxic concentrations of furosemide and exhibited a similiar sensitivity to HN2 as parental L1210 cells. Treatment of L1210 cells with 10uM HN2 resulted in a decrease in cell volume which was concurrent with the inhibition of the Na+-K+-CI- cotransporter. This was not observed in L1210 cells treated with either 1 or O.SuM HN2. Thus, possible differences in the cell death, in terms of necrosis and apoptosis, induced by the different concentrations of HN2 was investigated. The cell cycle of L1210 cells appeared to be blocked non-specifically by 10uM HN2 and in S and G2/M by either 1 or 0.5uM HN2. There were no significant changes in the cytosolic calcium concentrations of L1210 cells for up to 48 hrs after exposure to the three concentrations of HN2. No protection against th_ toxic effects of HN2 was observed in L1210 cells incubated with 5ug/ml CHX for up to 6 hrs. Incubation for 12 or 18 hrs with a non-toxic concentration (5mM) of L-Azetidine-2- carboxylic acid (ACA) enhanced the toxicity of low concentrations (<0.5uM) of HN2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary aim of the thesis is to provide a comprehensive investigation of the osmotic dehydration processes in plant tissue. Effort has been concentrated on the modelling for simulating the processes. Two mathematical models for simulating the mass transfer during osmotic dehydration processes in plant tissues are developed and verified using existing experimental data. Both models are based on the mechanism of diffusion and convection of any mobile material that can transport in plant tissues. The mass balance equation for the transport of each constituent is established separately for intracellular and extra-cellular volumes with taking into account the mass transfer across the cell membrane the intracellular and extra-cellular volumes and the shrinkage of the whole tissue. The contribution from turgor pressure is considered in both models. Model two uses Darcy’s law to build the relation between shrinkage velocity and hydrostatic pressure in each volume because the plant tissue can be considered as the porous medium. Moreover, it has been extended to solve the multi-dimensional problems. A lot of efforts have been made to the parameter study and the sensitivity analyses. The parameters investigated including the concentration of the osmotic solution, diffusion coefficient, permeability of the cell membrane, elastic modulus of the cell wall, critical cell volume etc. The models allow us to quantitatively simulate the time evolution of intracellular and extra-cellular volumes as well as the time evolution of concentrations in each cross-section.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antitumour bifunctional alkylating agent nitrogen mustard (HN2) inhibited the unidirectional influx of the potassium congener, 86 rubidium, into murine PC6A plasmacytoma cells and L1210 leukaemia cells. The proliferation of L1210 cells in vitro was characterised and shown to be sentitive to HN2. 86Rubidium influx into cells from rapidly-dividing cultures was more sensitive to inhibition by HN2 than that of cells from stationary cultures. Three components of unidirectional 86Rb+ & K+ influx into proliferating L1210 cells were identified pharmacologically: approximately 40% was active to the Na+ K+ ATPase inhibitor ouabain (10-3M), 40% was sensitive to the `loop' diuretics bumetanide (10-4M) and furosemide (10-3M) and the remainder was insensitive to both ouabain and furosemide. HN2 (10-5M) selectively inhibited the diuretic-sensitive component, which was entirely dependent upon extracellular Na+ and Cl- ions, and was presumed to represent Na+ K+ Cl- cotransport activity. The system did not mediate K+ /K+ exchange or unidirectional 86Rb+ efflux; accordingly, 86Rb+ efflux was insensitive to HN2. Inhibition of 86Rb & K+ influx by 10-5M HN2 was accompanied by approximately 35% of cell volume under isosmotic conditions; thus intracellular Na+ and K+ concentrations remained unchanged. These effects followed lethal damage to the cells but preceded actual cell death; other cellular functions were maintained including accumulation of cycloleucine, transmembrane potential, permeability to trypan blue, intracellular pH, total intracellular glutathione and calcium concentrations. No evidence was found that elevated cAMP levels or reduced ATP levels were involved in modulation of 86Rb+ & K+ influx. However, the Na+ - depedent transport of an amino acid was inhibited in a manner which appeared to be independent of 86Rb & K+ influx. An HN2-resistant L1210R cell line was also resistant to furosemide, and lacked a component of 86Rb+ & K+ influx which was sensitive to furosemide (10-3M). The results strongly suggest that the Na+ K+ Cl- costransporter of L1210 cells is a cellular target for HN2. This lesion is discussed with reference to the cytotoxic effects of the agent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work revealed that the solid solution compounds of Sr 2-xBaxNb2O7 are promising lead-free materials for high-temperature piezoelectric sensor application. These compounds were confirmed as ferroelectric materials with high Curie points (> 900°C) by their piezoelectric activity after poling, ferroelectric domain switching in their P-E hysteresis loops and thermal depoling behavior. The effect of Ba substitution on the structure and properties of Sr 2-xBaxNb2O7 (x < 1.0) was investigated. The solid solution limit of Sr2-xBaxNb 2O7 was determined by XRD as x < 0.6. The a-, b-, c- axes, and cell volume increase with Ba addition. The textured ceramics of Sr2-xBaxNb2O7 were prepared for the first time. The highest d33 was measured as 3.6 ± 0.1 pC/N for Sr1.8Ba0.2Nb2O7. © 2012 The American Ceramic Society.