23 resultados para CELL MEMBRANE GLYCOPROTEIN-1

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Intracellular thiols are maintained in their reduced state by a network of redox regulating peptides, proteins and enzymes such as glutathione, thioredoxins and thioredoxin reductase. Here we have investigated whether any relationship exists between age and secreted or cell surface thioredoxin-1, intracellular glutathione concentration and T cell surface thioredoxin 1 (Trx-1) and how this is related to interleukin (IL)-2 production.Results: Healthy older adults have reduced lymphocyte surface expression and lower circulating plasma Trx-1 concentrations. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show that cell surface Trx-1 is lowered, secretion of Trx-1 is decreased and the response to the lectin phytohaemagglutinin measured as IL-2 production is also affected. These effects are recapitulated by another glutathione depleting agent, diethylmaleate.Conclusion: Together these data suggest that a relationship exists between the intracellular redox compartment and Trx-1 proteins. Loss of lymphocyte surface Trx-1 may be a useful biomarker of healthy ageing. © 2013 Carilho Torrao et al.; licensee Chemistry Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes investigations upon pseudopeptides which were conducted to improve our understanding of the fate of synthetic macromolecules in cells and to develop approaches to influence that fate. The low uptake of molecules across the external cellular membrane is the principal barrier against effective delivery of therapeutic products to within the cell structure. In nature, disruption of this membrane by amphiphilic peptides plays a central role in the pathogenesis by bacterial and toxin infections. These amphiphilic peptides contain both hydrophobic and weakly charged hydrophilic amino acid residues and upon activation they become integrated into the lipid bilayers of the extracellular or endosomal membranes. The architectures of the pseudopeptides described here were designed to display similar pH dependent membrane rupturing activity to that of peptides derived from the influenza virus hemagglutinin HA-2. This HA protein promotes fusion of the influenza virus envelope with the cell endosome membrane due to a change in conformation in response to the acidic pH of the endosome lumen (pH 5.0-6.0). The pseudopeptides were obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various dicarboxylic acid moieties. In this way a linear polyamide comprising of alternating pendant carboxylic acids and pendant hydrophobic moieties was made. At physiological pH (pH 7.4), electrostatic repulsion of pendant anionic carboxyl groups along the polymer backbone is sufficient to overcome the intramolecular association of the hydrophobic groups resulting in an extended conformation. At low pH (typically pH 4.8) loss of charge results in increased intramolecular hydrophobic association and the polymer chain collapses to a compact conformation, leading to precipitation of the polymer. Consequently, a conformation dependent functional property could be made to respond to small changes in the environmental pH. Pseudopepides were investigated for their cytoxicity towards a well known cell line, namely C26 (colorectal adenocarcinoma) and were shown through the use of a cell viability assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) to be well tolerated by C26 cells over a range of concentrations (2-500,μg/ml) at physiological pH (pH 7.4). A modified version of a shorter 30-minute coupled enzymatic assay, the LDH (lactate dehydrogenase) assay was used to evaluate the ability of the pseudopeptides to disrupt the membrane of two different cell lines (COS-1; African green monkey, kidney and A2780; human ovarian carcinoma) at low pH (pH 5.5). The cell membrane disruption property of the pseudopeptides was successfully demonstrated for COS-I and A2780 cell lines at this pH (pH 5.5). A variety of cell lines were chosen owing to limited availability and to compare the cytotoxic action of these pH responsive psudopeptides towards normal and tumorogenic cell lines. To investigate the intracellular delivery of one of the pseudopeptides, poly (L-lysine iso-phthalamide) and its subcellular location, a Cy3 bisamine fluorophore was conjugated into its backbone, at ratios of dye:lysine of 1:20, 1:30, 1:40, 1:60 and 1:80. Native polyacrylacrylamide gel electrophoresis (PAGE) and high voltage paper electrophoresis (HVPE) studies of the polydyes were conducted and provided evidence that that the Cy3 bisamine fluorophore was conjugated into the backbone of the polymer, poly (L-lysine iso-phthalamide). The subcellular fate of the fluorescentlylabelled "polydye" (hereafter PD20) was monitored by laser scanning confocal microscopy (LSCM) in CHO (Chinese hamster ovary) cells cultured in-vitro at various pH values (pH 7.4 and 5.0). LSCM images depicting time-dependent internalisation of PD20 indicated that PD20 traversed the extracellular membrane of CHO cells cultured in-vitro within ten minutes and migrated towards the endosomal regions where the pH is in the region of 5.0 to 6.0. Nuclear localisation of PD20 was demonstrated in a subpopulation of CHO cells. A further study was completed in CHO and HepG2 (hepatocellular carcinoma) cells cultured in-vitro using a lower molecular weight polymer to demonstrate that the molecular weight of "polydye" could be tailored to attain nuclear trafficking in cells. Prospective use of this technology encompasses a method of delivering a payload into a living cell based upon the hypercoiling nature of the pseudopeptides studied in this thesis and has led to a patent application (GB0228525.2; 20(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The family's structural features and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this has only been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations, through transient receptor potential channels, that trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly-changing local cellular water availability. Moreover, since calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical concept of estrogen receptor (ER) activation is that steroid passes the cell membrane, binds to its specific protein receptor in the cell's cytoplasm and the steroid-receptor complex travels to the nucleus where it activates responsive genes. This basic idea has been challenged by results of experiments demonstrating insulin-like growth factor 1 (IGF-1) activation of the ER in the complete absence of estrogen suggesting at least one other mechanism of ER activation not involving steroid. One explanation is that activation of the cell surface IGF-1 receptor leads to synthesis of an intracellular protein(s) able to bind to and stimulate the ER. Based on results using the two-hybrid system, coimmunoprecipitation and transfection-luciferase assays, we herein show that one of these proteins could well be receptor for activated C kinase 1 (RACK-1). Using the human ER type α (ER-α) as bait, a cloned complementary deoxyribonucleic acid (cDNA) library from IGF-1 treated human breast cancer MCF-7 cells was screened for ER-α - protein interactions. Many positive clones were obtained which contained the RACK-1 cDNA sequence. Coimmunoprecipitation of in-vitro translation products of the ER-α and RACK-1 confirmed the interaction between the two proteins. Transfection studies using the estrogen response element spliced to a luciferase reporter gene revealed that constitutive RACK-1 expression was able to powerfully stimulate ER-α activity under estrogen-free conditions. This effect could be enhanced by 17β-estradiol (E2) and blocked by tamoxifen, an E2 antagonist. These results show that RACK-1 is able to activate the ER-α in the absence of E2, although together with the latter, enhanced effects occur. Since RACK-1 gene expression is stimulated by IGF-1, it is distinctly possible that RACK-1 is the mediator of the stimulatory effects of IGF-1 on ER-α. © 2014 JMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p<0.05 and >1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a 15-mer antisense c-myc phosphorothioate modified oligodeoxynucleotide (OdN) upon the volume-sensitive Cl- current in ROS 17/2.8 cells were investigated using the whole-cell configuration of the patch clamp technique. At 5 microM, the OdN reversibly inhibited the current in a voltage- and time-dependent fashion. This was evident from the reduction in the peak current as assessed at the termination of each voltage pulse and an acceleration of the time-dependent inactivation present at strongly depolarised potentials. The kinetic modifications induced by the OdN suggest it may act by blocking the pore of open channels when the cell membrane potential is depolarised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1 mM) or (NAC, 1 mM) showed abolition of INH toxicity. In contrast, the addition of GSH or NAC 1 h after INH failed to protect the cells from INH toxicity (P < 0.0001). The 2-pyridyl-carboxamidrazone 'Compound 1' caused a 50% reduction in cell recovery compared with control (P < 0.001), although this was abolished by the presence of either GSH or NAC. A 1 h post incubation with either NAC or GSH after Compound 1 addition failed to protect the cells from toxicity (P < 0.001). Co-administration of lipoic acid (LA) abolished Compound 1-mediated toxicity, although again, this effect did not occur after LA addition 1 h post incubation with Compound 1 (P < 0.001). However, co-administration of dihydrolipoic acid (DHLA) prevented Compound 1-mediated cell death when incubated with the compound and also after 1 h of Compound 1 alone. Pre-treatment with GSH, then removal of the antioxidant resulted in abolition of Compound 1 toxicity (vehicle control, 63.6 ± 16.7 versus Compound 1 alone 26.1 ± 13.6% versus GSH pre-treatment, 65.7 ± 7.3%). In a cell-free incubation, NMR analysis revealed that GSH does not react with Compound 1, indicating that this agent is not likely to directly deplete membrane thiols. Compound 1's MNL toxicity is more likely to be linked with changes in cell membrane conformation, which may induce consequent thiol depletion that is reversible by exogenous thiols. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with the analysis of tear proteins, paying particular attention to the state of the tears (e.g. non-stimulated, reflex, closed), created during sampling, and to assess their interactions with hydrogel contact lenses. The work has involved the use of a variety of biochemical and immunological analytical techniques for the measurement of proteins, (a), in tears, (b), on the contact lens, and (c), in the eluate of extracted lenses. Although a diverse range of tear components may contribute to contact lens spoilation, proteins were of particular interest in this study because of their theoretical potential for producing immunological reactions. Although normal host proteins in their natural state are generally not treated as dangerous or non-self, those which undergo denaturation or suffer a conformational change may provoke an excessive and unnecessary immune response. A novel on-lens cell based assay has been developed and exploited in order to study the role of the ubiquitous cell adhesion glycoprotein, vitronectin, in tears and contact lens wear under various parameters. Vitronectin, whose levels are known to increase in the closed eye environment and shown here to increase during contact lens wear, is an important immunoregulatory protein and may be a prominent marker of inflammatory activity. Immunodiffusion assays were developed and optimised for use in tear analysis, and in a series of subsequent studies used for example in the measurement of albumin, lactoferrin, IgA and IgG. The immunodiffusion assays were then applied in the estimation of the closed eye environment; an environment which has been described as sustaining a state of sub-clinical inflammation. The role and presence of a lesser understood and investigated protein, kininogen, was also estimated, in particular, in relation to contact lens wear. Difficulties arise when attempting to extract proteins from the contact lens in order to examine the individual nature of the proteins involved. These problems were partly alleviated with the use of the on-lens cell assay and a UV spectrophotometry assay, which can analyse the lens surface and bulk respectively, the latter yielding only total protein values. Various lens extraction methods were investigated to remove protein from the lens and the most efficient was employed in the analysis of lens extracts. Counter immunoelectrophoresis, an immunodiffusion assay, was then applied to the analysis of albumin, lactoferrin, IgA and IgG in the resultant eluates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of antisense oligonucleotide (ODN) therapy is dependent on four major parameters: delivery to cells, intracellular stability and localisation and efficient action at the target site.The aim of this project was to study the delivery of ODNs to macrophages and to assess the stability of two ODN conjugates, in vitro. The first conjugate aimed to improve uptake of ODNs via mannose receptor mediated delivery, the second investigated the improved delivery of ODN conjugates via non-specific lipophilic interaction with the cell membrane. A mono-mannose phosphoramidite derivative was designed and synthesised and a mono-mannose ODN conjugate synthesised by standard phosphoramidite chemistry. Delivery of this conjugate was enhanced to RAW264.7 and J774 macrophage cell lines via a mechanism of receptor mediated endocytosis. The delivery of three lipophilic ODN conjugates, cholesterol (cholhex), 16-carbon alkyl chain (C16) and hexa-ethylene glycol (HEG) moieties and an unconjugated ODN were assessed in RAW264.7 macrophages. All three conjugates increased the lipophilicity of the ODN as assessed from partition coefficient data. Both the cholhex and unconjugated ODNs were found to have higher degrees of cellular association than the C16 and HEG conjugates. Cellular uptake studies implicated internalisation of these ODNs by an adsorptive endocytosis mechanism. Following endocytosis, ODNs must remain stable during their residence in endosomal/lysosomal compartments prior to exiting and exerting their biological action in either the cytosol or nucleus. Assessment of in vitro stability in a lysosomal extract revealed the cholhex conjugate and unconjugated ODNs to have a longer half-life than the C16 and HEG conjugated ODNs, highlighting the influence of conjugate moieties on lysosomal stability. The effects of base composition and length on stability in a lysosomal extract revealed the longest half-life for homo-cytidine ODNs and ODNs over 20 nucleotides in length. These studies suggest that the above conjugates can enhance cellular association and delivery of antisense ODNs to cultured macrophages. This may lead to their use in treating disorders such as HIV infection, which affects this cell type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxynucleotides can selectively inhibit individual gene expression provided they remain stable at the target site for a sufficient period of time. Thus, the efficacy of antisense oligodeoxynucleotides may be improved by employing a sustained release delivery system which would protect from degradation by nucleases whilst delivering the nucleic acid in a controlled manner to the site of action. Biodegradable polymer films and micro spheres were evaluated as delivery devices for the oligodeoxynucleotides and ribozymes. Polymers such as polylactide, polyglycolide, polyhydroxybutyrate and polyhydroxyvalerate were used due to their biocompatability and non toxic degradation products. Release profiles of antisense nucleic acids from films over 28 days was biphasic, characterised by an initial burst release during the first 48 hours followed by a more sustained release. Release from films of longer antisense nucleic acids was slower compared to shorter nucleic acids. Backbone type also affected release, although to a lesser extent than length. Total release of the nucleic acids is dependent upon polymer degradation, no degradation of the polymer films was evident over the 28 day period, due to the high molecular weight and crystallinity of the polymers required to make solvent cast films. Backbone length and type did not affect release from microspheres, release was generally faster than from films, due to the increased surface area, and low molecular weight polymers which showed signs of degradation over the release period, resulting in a triphasic release profile. An increase in release was observed when sphere size and polymer molecular weight were decreased. The polymer entrapped phosphodiester oligodeoxynucleotides and ribozymes had enhanced stability compared to free oligodeoxynucleotides and ribozymes when incubated in serum. The released nucleic acids were still capable of hybridising to their target sequence, indicating that the fabrication processes did not adversely effect the properties of the antisense nucleic acids. Oligodeoxynucleotides loaded in 2μm spheres had a 10 fold increase in macrophage association compared to free oligodeoxynucleotides. Fluorescent microscopy indicates that the polymer entrapped oligodeoxynucleotide is concentrated inside the cell, whereas free oligodeoxynucleotides are concentrated at the cell membrane. Biodegradable polymers can reduce the limitations of antisense therapy and thus offer a potential therapeutic advantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary aim of the thesis is to provide a comprehensive investigation of the osmotic dehydration processes in plant tissue. Effort has been concentrated on the modelling for simulating the processes. Two mathematical models for simulating the mass transfer during osmotic dehydration processes in plant tissues are developed and verified using existing experimental data. Both models are based on the mechanism of diffusion and convection of any mobile material that can transport in plant tissues. The mass balance equation for the transport of each constituent is established separately for intracellular and extra-cellular volumes with taking into account the mass transfer across the cell membrane the intracellular and extra-cellular volumes and the shrinkage of the whole tissue. The contribution from turgor pressure is considered in both models. Model two uses Darcy’s law to build the relation between shrinkage velocity and hydrostatic pressure in each volume because the plant tissue can be considered as the porous medium. Moreover, it has been extended to solve the multi-dimensional problems. A lot of efforts have been made to the parameter study and the sensitivity analyses. The parameters investigated including the concentration of the osmotic solution, diffusion coefficient, permeability of the cell membrane, elastic modulus of the cell wall, critical cell volume etc. The models allow us to quantitatively simulate the time evolution of intracellular and extra-cellular volumes as well as the time evolution of concentrations in each cross-section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus epidermidis are common Gram-positive bacteria and are responsible for a number of life-threatening nosocomial infections. Treatment of S. epidermidis infection is problematic because the organism is usually resistant to many antibiotics. The high degree of resistance of this organism to a range of antibiotics and disinfectants is widely known. The aims of this thesis were to investigate and evaluate the susceptibility of isolates of S. epidermidis from various infections to chlorhexidine (CHX) and to other disinfectants such as benzalkonium chloride (BKC), triclosan (TLN) and povidone-iodine (PI). In addition, the mechanisms of resistance of S. epidermidis to chlorhexidine (the original isolates and strains adapted to chlorhexidine by serial passage) were examined and co-resistance to clinically relevant antibiotics investigated. In 3 of the 11 S. epidermidis strains passaged in increasing concentrations of chlorhexidine, resistance to the disinfectant arose (16-fold). These strains were examined further, each showing stable chlorhexidine resistance. Co-resistance to other disinfectants such as BKC, TLN and PI and changes in cell surface hydrophobicity were observed. Increases in resistance were accompanied by an increase in the proportion of neutral lipids and phospholipids in the cell membrane. This increase was most marked in diphosphatidylglycerol. These observations suggest that some strains of S. epidermidis can become resistant to chlorhexidine and related disinfectants/antiseptics by continual exposure. The mechanisms of resistance appear to be related to changes in membrane lipid compositions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclothialidine, a natural product isolated from Streptomyces .filipinensis NR0484, has been proven to be a potent and selective inhibitor of the bacterial enzyme DNA gyrase. Gyrase inhibition results in cell death, the enzyme being the target of several currently used antibiotics. Cyclothialidine showed poor activity against whole bacterial cells, highlighting scope for improvement regarding cell membrane pemeability in order for the full potential of this new class of antibiotics to be realised, Structurally, cyclothialidine contains a 12-membered lactone ring which is partly integrated into a pentapeptide chain, with a substituted aromatic moiety bordering the lactone, Retrosynthetically it can be traced back to cis-3-hydroxyproline, 3,5-dihydroxy-2,6-dimethylbenzoic acid and four commercially available amino acids; two serine, one cysteine and one alanine. In this work, a model of cyclothialidine was synthesised in order to establish the methodology for more complex compounds. Analogues with hydroxy, dihydroxy and dihydroxymethyl substituted aromatic moieties were then prepared to ensure successful protection methods could be performed and the pharmacophore synthesised. The key aromatic moiety, 2,6-dimethyl-3,5-dihydroxybenzoic acid was produced via two successive Mannich reaction/reduction steps. Acid protection using 4-nitrobenzyl bromide and TBDMS hydroxyl protection followed by bromination of one methyl afforded the desired intermediate. Reaction with a serine/cysteine dipeptide, followed by deprotection and cyclisation under Mitsunobu conditions lead to the 12-membered lactone. An amine substituted aromatic analogue and also replacement of the cysteine sulphur by oxygen were attempted but without success. In an effort to improve cell permeability, a conjugate was synthesised between the pharmacophore and a cholesterol moiety. It was hoped the steroid fragment would serve to increase potency by escorting the molecule through the lipid environment of the cell membrane. The pharmacophore and conjugate were tested against a variety of bacterial strains but the conjugate failed to improve activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coagulase-negative staphylococci are the most frequent cause of sepsis associated with indwelling intravascular catheters. Current microbiological investigations to support the diagnosis of catheter-related sepsis (CRS) include the culture of blood and catheter tips, however positive results may reflect specimen contamination, or colonisation of the catheter rather than true sepsis. Previous serological approaches to assist in the diagnosis of CRS based on cellular staphylococcal antigens have been of limited value. In this current study, the serodiagnostic potential of an exocellular antigen produced by 7 strains of coagulase-negative staphylococci cultured in brain heart infusion broth was investigated. Antigenic material isolated by gel permeation from liquid culture was characterised by immunological techniques and chemical analysis. Characterisation of the exocellular antigen revealed a novel glycerophosphoglycolipid, termed lipid S. which shared antigenic determinants with lipoteichoic acid, but differed by comprising a glycerophosphate chain length of only 6 units. In addition, lipid S was immunologically distinct from diphosphatidyl glycerol, a constituent cell membrane phospho lipid. An indirect enzyme linked immunosorbent assay (ELISA) based on lipid S was subsequently developed and used to determine serum antibody levels (IgM and IgG) in 67 patients with CRS due to staphylococci, and 67 patients with a central venous catheter (CVC) in situ who exhibited no evidence of sepsis. The sensitivity and specificity of the lipid S IgG ELISA was 75% and 90% respectively whilst the IgM assay had sensitivity and specificity of 52% and 85%. The addition of GullSORereagent to the EL1SA procedure to remove competing serum IgG and rheumatoid factor did not significantly improve the performance of the IgM assay. The serological response in serial serum samples of 13 patients with CRS due to staphylococci was investigated. Elevated levels of antibody were detected at an early stage of infection, prior to the isolation of microorganisms by standard culture methods, and before the clinical presentation of sepsis in 3 patients. The lipid S ELISA was later optimised and a rapid 4-hour assay developed for the serodiagnosis of CRS. Serum IgG levels were determined in 40 patients with CRS due to staphylococci and 40 patients with a CVC in situ who exhibited no evidence of sepsis. The sensitivity and specificity of the rapid IgG assay was 70% and 100% respectively. Elevated serum antibody levels in patients with endocarditis, prosthetic joint infection and pyogenic spondylodiscitis due to Gram-positive cocci were also detected with the lipid S ELISA suggesting that the assay may facilitate the diagnosis of these infections. Unexpected increased levels of anti-lipid S IgG in 31% of control patients with sciatica suggested a possible microbial aetiology of this condition. Further investigation of some of these patients by culture of microdiscectomy tissue removed at operation, revealed the presence of low-virulent microorganisms in 37% of patients of which Propionibacterium aeries accounted for 85% of the positive culture isolates. The results suggested a previously unrecognised association between P. acnes and sciatica, which may have implications for the future management of the condition.