38 resultados para CATIONIC RESIDUES

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Western Yiddish, the spoken language of the traditional Jewish society in the German- and Dutch-speaking countries, was abandoned by its speakers at the end of the 18th in favour of the emerging standard varieties: Dutch and German, respectively. Remnants of Western Yiddish varieties, however, remained a medium of discourse in remote provinces and could be found well into the 19th and sometimes the 20th century in some South-western areas of Germany and Switzerland, the Alsace, some areas of the Netherlands and in parts of the German province of Westphalia. It appears that rural Jewish communities sometimes preserved in-group vernaculars, which were based on Western Yiddish. Sources discovered in 2004 in the town of Aurich prove that Jews living in East Frisia, a Low-German speaking peninsula in the North-west of Germany, used a variety based on Western Yiddish until the Second World War. It appears that until the Holocaust a number of small, close-knit Jewish communities East Frisia, which depended economically mainly on cattle-trading and butchery, kept certain specific cultural features, among them the vernacular which they spoke alongside Low German and Standard German. The sources consist of two amateur theatre plays, a memoir and two word lists written in 1902, 1928 and the 1980s, respectively. In the monograph these sources are documented and annotated as well as analyzed linguistically against the background of rural Jewish life in Northern Germany. The study focuses on traces of language contact with Low German, processes of language change and on the question of the function of the variety in day-to-day life in a rural Jewish community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of safe and efficient nonviral vectors for gene delivery has attracted significant attention in recent years. Previous experiments have revealed that the charge density of a polycation (the carrier) plays a crucial role in complexation and the release of the gene from the complex in the cytosol. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with six cationic carrier systems of varying charge and surface topology. The simulations reveal detailed molecular-level pictures of the structures and dynamics of the RNA-polycation complexes. Estimates for the binding free energy indicate that electrostatic contributions are dominant followed by van der Waals interactions. The binding free energy between the 8(+)polymers and the RNA is found to be larger than that of the 4(+)polymers, in general agreement with previously published data. Because reliable binding free energies provide an effective index of the ability of the polycationic carrier to bind the nucleic acid and also carry implications for the process of gene release within the cytosol, these novel simulations have the potential to provide us with a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance the rational design of nonviral gene delivery systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaporins and aquaglyceroporins mediate the transport of water and solutes across biological membranes. Saccharomyces cerevisiae Fps1 is an aquaglyceroporin that mediates controlled glycerol export during osmoregulation. The transport function of Fps1 is rapidly regulated by osmotic changes in an apparently unique way and distinct regions within the long N- and C-terminal extensions are needed for this regulation. In order to learn more about the mechanisms that control Fps1 we have set up a genetic screen for hyperactive Fps1 and isolated mutations in 14 distinct residues, all facing the inside of the cell. Five of the residues lie within the previously characterized N-terminal regulatory domain and two mutations are located within the approach to the first transmembrane domain. Three mutations cause truncation of the C-terminus, confirming previous studies on the importance of this region for channel control. Furthermore, the novel mutations identify two conserved residues in the channel-forming B-loop as critical for channel control. Structural modelling-based rationalization of the observed mutations supports the notion that the N-terminal regulatory domain and the B-loop could interact in channel control. Our findings provide a framework for further genetic and structural analysis to better understand the mechanism that controls Fps1 function by osmotic changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the molecular mechanism of gene condensation is a key component to rationalizing gene delivery phenomena, including functional properties such as the stability of the gene-vector complex and the intracellular release of the gene. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with four cationic carrier systems of varying charge and surface topology at different charge ratios. At lower charge ratios, polymers bind quite effectively to siRNA, while at high charge ratios, the complexes are saturated and there are free polymers that are unable to associate with RNA. We also observed reduced fluctuations in RNA structures when complexed with multiple polymers in solution as compared to both free siRNA in water and the single polymer complexes. These novel simulations provide a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance progress toward rational design of nonviral gene delivery systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of cationic liposomes for gene delivery has been ongoing for almost 20 years; however, despite extensive efforts to develop a successful therapeutic agent, there has been limited progress towards generating an effective pharmaceutical product. Since the introduction of N-(1-[2,3-dioley-loxy]propyl)-N,N,N-trimethylammonium chloride, an immense number of different cationic lipids have been synthesised and used to formulate cationic liposome - DNA complexes. Structural modification of the cationic lipids and the addition of components within the delivery system that can facilitate the fusion, cellular uptake and targeting of liposome - DNA complexes have all been used in a bid to enhance their transfection efficiency. Unfortunately, the overall impact of these improvements is still nominal, with the vast majority of clinical trials (∼ 85%) continuing to rely on more potent viral delivery of DNA despite their associated toxicity issues. Key characteristics of the most effective cationic liposomes for the delivery of plasmid DNA (from a consensus of the literature) is identified here and the problems of converting these attributes into an effective pharmaceutical product are outlined. © 2006 Informa UK Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFN? responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With respect to liposomes as delivery vehicles and adjuvants for vaccine antigens, the role of vesicle surface charge remains disputed. In the present study we investigate the influence of liposome surface charge and antigen-liposome interaction on the antigen depot effect at the site of injection (SOI). The presence of liposome and antigen in tissue at the SOI as well as the draining lymphatic tissue was quantified to analyse the lymphatic draining of the vaccine components. Furthermore investigations detailing cytokine production and T-cell antigen specificity were undertaken to investigate the relationship between depot effect and the ability of the vaccine to induce an immune response. Our results suggest that cationic charge is an important factor for the retention of the liposomal component at the SOI, and a moderate to high (>50%) level of antigen adsorption to the cationic vesicle surface was required for efficient antigen retention in the same tissue. Furthermore, neutral liposomes expressing poor levels of antigen retention were limited in their ability to mediate long term (14 days) antigen presentation to circulating antigen specific T-cells and to induce the Th1 and Th17 arms of the immune system, as compared to antigen adsorbing cationic liposomes. The neutral liposomes did however induce the production of IL-5 at levels comparable to those induced by cationic liposomes, indicating that neutral liposomes can induce a weak Th2 response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of dimethyl dioctadecyl ammonium bromide (DDA) and the synthetic cord factor trehalose dibehenate (TDB) with Ag85B-ESAT-6 (H1 fusion protein) has been found to promote strong protective immune responses against Mycobacterium tuberculosis. The development of a vaccine formulation that is able to facilitate the requirements of sterility, stability and generation of a vaccine product with acceptable composition, shelf-life and safety profile may necessitate selected alterations in vaccine formulation. This study describes the implementation of a sterilisation protocol and the use of selected lyoprotective agents in order to fulfil these requirements. Concomitantly, close analysis of any alteration in physico-chemical characteristics and parameters of immunogenicity have been examined for this promising DDA liposome-based tuberculosis vaccine. The study addresses the extensive guidelines on parameters for non-clinical assessment, suitable for liposomal vaccines and other vaccine delivery systems issued by the World Health Organisation (WHO) and the European Medicines Agency (EMEA). Physical and chemical stability was observed following alteration in formulations to include novel cryoprotectants and radiation sterilisation. Immunogenicity was maintained following these alterations and even improved by modification with lysine as the cryoprotective agent for sterilised formulations. Taken together, these results outline the successful alteration to a liposomal vaccine, representing improved formulations by rational modification, whilst maintaining biological activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the polymerization of styrene iniated by 1-chloro-1-phenyltehane/tin (IV) chloride in the presence of tetrabutylammonium chloride have been studied. Dilatometry studies at 25 °C were conducted and the orders of reaction were established. Molecular weight studies were conducted for these experiments using size exclusion chromatography. These studies indicated that transfer/termination reactions were present. The observed kinetics may be explained by a polymerization mechanism involving a single propagating species which is present in low concentrations. Reactions at 0 °C and -15 °C have shown that a "living" polymerization could be obtained at low temperatures. A method was derived to study the kinetics of a "living" polymerization by following the increase in degree of polymerization with time. Polymerizations of styrene were conducted using 1,4-bis(bromomethyl)benzene as a difunctional co-catalyst. These reactions produced polymers with broad or bimodal molecular weight distributions. These observations may be explained by the rate of initiation being slower than the rate of propagation or the presence of transfer/termination reactions. Reactions were conducted using a co-catalyst using a co-catalyst produced by the addition of 1,1-diphenylethane to 1,4-bis(bromomethyl)benzene. Size exclusion chromatography studies showed that the polymers produced had a narrower molecular weight distribution than those produced by polymerizations initiated by 1,4-bis(bromomethyl)benzene alone. However the polydispersity was still observed to increase with reaction time. This may also be explained by slow initiation compared to the rate of propagation. Polymerizations initiated by both bifunctional initiators were examined using the method of studying reaction kinetics by following the change in number average degree of polymerization. The results indicated that a straight line relationship could also be obtained with a non-living polymerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymerization of isobutene initiated by 1-chloro-1-phenylethane has been investigated, and molecular weight studies conducted using size exclusion chromatography. Polymerizations carried out in a 40/60 (v/v) mixture of dichloromethaneIcyclohexane, using titanium (IV) chloride as a catalyst in the presence of pyridine at -30 °C were found to be controlled and living. The number average molecular weights of the polymers increased linearly with monomer conversion, and the molecular weight distributions were between 1.15 and 1.20. Efficiencies of initiation were between 80 and 100%, and evidence was found to suggest that backbiting to the initiator had occurred, resulting in the formation of cyclic oligomers during the early stages of polymerization. The kinetics of polymerization can be explained in terms of active species in. equilibrium with dormant species. The effects of temperature. and dielectric constant on this equilibrium were studied and a model based upon the Fuoss equation was developed. Pyridine was found to behave as proton trap in the system, and when it was used in excess the rate of polymerization was retarded. By assuming that the catalyst and pyridine formed a one to one complex, it was possible to show that the reaction was second order with respect to the catalyst. The synthesis of low molecular weight polyisobutenes was studied. When the concentration of initiator was increased relative to that of the isobutene, such that the theoretical degree of polymerization was 20 or less, the rate of initiation was slow compared to propagation. The efficiency of initiation in these polymerizations was typically between 30 and 40 %. Optimal conditions of temperature. and.catalyst concentration were established, leading to a 60 % efficiency of initiation. A one-pot synthesis of phenol end-capped polyisobutene was attempted by adding phenol at the end of a living polymerization. Evidence to substantiate the existence of capped polymer chains in the resultant product was inconclusive. Block copolymerizations of oxetane and isobutene were conducted using 1-chloro-1phenylethane/TiCl4, but no copolymer or oxetane homopolymer could be isolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes an experimental investigation of synthesis of polystyrene under various polymerization conditions such as solvent polarity, temperature, initial concentrations of initiator, catalyst, monomer and added salts or co-catalyst, which was achieved using the living cationic polymerization technology in conjunction with gel permeation chromatography (GPC) and NMR spectroscopy. Polymerizations of styrene were conducted using 1-phenyl ethylchloride (1-PEC) as an initiator and tin tetrachloride (SnCI4) as a catalyst in the presence of tetra-n-Butylammonium chloride (nBu4NCI). Effects of solvent polarity varied by mixing dichloromethane (DCM) and less polar cyclohexane (C.hex), temperature, initial concentrations of SnC14, 1-PEC and nBu4NCI on the polymerizations were examined, and the conditions under which a living polymerization can be obtained were optimised as: [styrene]o ~ 0.75 - 2 M; [1-PEC]o ~ 0.005 - 0.05 M; [SnCI4Jo ~ 0.05 - 0.4 M; [nBu4NCIJo ~ 0.001 - 0.1 M; DCM/C.hex ~ 50/0 - 20/30 v/v; T ~ 0 to -45°C. Kinetic studies of styrene polymerization using the Omnifit sampling method showed that the number average molecular weight (Mn) of the polymers obtained increased in direct proportion to monomer conversion and agreed well with the theoretical Mn expected from the concentration ratios of monomer to initiator. The linearities of both the 1n([MJoI[M]) vs. time plot and the Mn vs. monomer conversion plot, and the narrow molecular weight distribution (MWD) measured using GPC demonstrated the livingness of the polymerizations, indicating the absence of irreversible termination and transfer within the lifetimes of the polymerizations. The proposed 'two species' propagation mechanism was found to apply for the styrene polymerization with 1-PEC/SnCI4 in the presence of nBu4NCl. The further kinetic experiments showed that living styrene polymerizations were achieved using the 1-PEC/SnCI4 initiating system in mixtures of DCM/C.hex 30/20 v/v at -15°C in the presence of various bromide salts, tetra-n-butylammonium bromide, tetra-n-pentylammonium bromide, tetra-n-heptylammonium bromide, and tetra-n-octylammonium bromide, respectively. The types of the bromide salts were found to have no significant effect on monomer conversion, Mn, polydispersity and initiation efficiency. Living polymerizations of styrene were also achieved using titanium tetrachloride (TiCI4) as a catalyst and 1-PEC as an initiator in the presence of a small amount of 2,6-di-tert-butylpyridine or pyridine instead of nBu4NCl. GPC analysis showed that the polymers obtained had narrow polydispersities (P.D. < 1.3), and the linearities of both the In([MJo/[MJ) vs. time plot and the Mn vs. monomer conversion plot demonstrated that the polymerizations are living, when the ratio of DCM and C.hex was less than 40 : 10 and the reaction temperature was not lower than -15°C. The reaction orders relative to TiCl4 and 1-PEC were estimated from the investigations into the rate of polymerization to be 2.56 and 1.0 respectively. lH and 13C NMR analysis of the resultant polystyrene would suggest the end-functionality of the product polymers is chlorine for all living polymerizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems with the use of synthetic polymers as biomaterials is the invasion of micro-organisms causing infection. A study of the properties of polymeric antibacterial agents, in particular polyhexamethylene biguanide, has revealed that the essential components for the design of a novel polymeric antibacterial are a balance between hydrophilicity and hydrophobicity coupled with sites of cationicity. The effect of cation incorporation on the physical properties of hydrogels has been investigated. Hydrogel systems copolymerised with either N-vinyl imidazole or dimethylaminoethyl methacrylate have been characterised in terms of their water binding, mechanical and surface properties. It has been concluded that the incorporation of these monomers does not adversely affect the properties of such hydrogels and that these materials are potential candidates for further development for use in biomedical applications. It has been reported that hydro gels with ionic character may increase the deposition of biological material onto the hydrogel surface when it is in contact with body fluids. An investigation into the deposition characteristics of hydrogels containing the potentially cationic monomers has been carried out, using specific protein adsorption and in vitro spoilation techniques. The results suggest that at low levels of cationicity, the deposition of positively charged proteins is reduced without adversely affecting the uptake of the other proteins. The gross deposition characteristics were found to be comparable to some commercially available contact lens materials. A preliminary investigation into the development of novel antibacterial polymers has been completed and some novel methods of bacterial inhibition discussed. These methods include development of an hydrogel whose potential application is as a catheter coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics and mechanisms of ring opening polymerization and copolymerizntion of different cyclic ethers were studied using mainly a cationic system of iinitiation. BF30Et2/ethanediol. The cyclic ethers reacted differently showing that ring strain and basicity are the main driving forces in cationic ring opening polymerizaion. In most cases it was found that the degree of polymerization is controlled kinetically via terminations with the counterion and the monomers, and that the contribution of each type of reaction to the overall termination differs markedly. The Gel permeation chromatography studies showed that the molecular weight distribution of the samples of polyoxetanes were bimodal. This was in accordance with previous work establishing that the cyclic tetramer is found in much higher proportions than any of the other cyclic oligomers. However the molecular weight distribution of the copolymers made from oxetane and THF or from oxetane and oxepane were shown to be unimodal. These observations could be explained by a change in the structure of the growing end involved in the cationic polymerization. In addition crown ethers like dibenzo-crown-6 and compounds such as veratrole are believed to stabilise the propagating end and promote the formation of living polymers from oxetane.