18 resultados para CA1
em Aston University Research Archive
Resumo:
The density of ballooned neurons (BN), tau-positive neurons with inclusion bodies (tau+ neurons), and tau-positive plaques (tau+ plaques) was determined in sections of the frontal, parietal, and temporal lobe in 12 patients with corticobasal degeneration (CBD). No significant differences in the mean density of BN and tau+ neurons were observed between neocortical regions. In the hippocampus, the densities of BN were significantly lower than in the neocortex, and densities of tau+ neurons were greater in sectors CA1 and CA2, compared with CA3 and CA4. Tau+ plaques were present in one or more brain regions in six patients. Significantly more BN were recorded in the lower (laminae V/VI) compared with the upper cortex (laminae I/II/III) but tau+ neurons were equally frequent in the upper and lower cortex. No significant correlations were observed between the densities of BN and tau+ neurons, but the densities of BN in the superior temporal gyrus and tau+ plaques in the frontal cortex were positively correlated with age. A principal components analysis (PCA) suggested that differences in the density of tau+ neurons in the frontal and motor cortex were the most important sources of variation between patients. In addition, one patient with a particularly high density of tau+ neurons in the hippocampus appeared to be atypical of the patient group studied. The data support the hypothesis that, although clinically heterogeneous, CBD is a pathologically distinct disorder. (C) 2000 Academic Press.
Resumo:
The density of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in Glees and Marsland stained sections of the hippocampus and parahippocampal gyrus (PHG) in 20 pateints with Alzheimer's disease. In addition, in six of the patients, the density of beta/A4 protein deposits, as revealed by immunohistochemistry and neurofibrillary changes demonstrated with the Gallyas stain, were studied in adjacent sections. The density of Glees SP and beta/A4 deposits was significantly greater in area CA1 of the hippocampus and in the subiculum than in the PHG. Hence, neurofibrillary degeneration appears to be a more important lesion than beta/A4 deposition in the hippocampus compared with the PHG. In addition, the detailed distribution of the lesions in the hippocampus could be explained if beta/A4/SP and NFT occur on the axon terminals and in the cell bodies respectively of the same neurons.
Resumo:
Objective: To quantify the neuronal and glial cell pathology in the hippocampus and the parahippocampal gyrus (PHG) of 8 cases of progressive supranuclear palsy (PSP). Material: tau-immunolabeled sections of the temporal lobe of 8 diagnosed cases of PSP. Method: The densities of lesions were measured in the PHG, CA sectors of the hippocampus and the dentate gyrus (DG) and studied using spatial pattern analysis. Results: Neurofibrillary tangles (NFT) and abnormally enlarged neurons (EN) were most frequent in the PHG and in sector CA1 of the hippocampus, oligodendroglial inclusions (“coiled bodies”) (GI) in the PHG, subiculum, sectors CA1 and CA2, and neuritic plaques (NP) in sectors CA2 and CA4. The DG was the least affected region. Vacuolation and GI were observed in the alveus. No tufted astrocytes (TA) were observed. Pathological changes exhibited clustering, the lesions often exhibiting a regular distribution of the clusters parallel to the tissue boundary. There was a positive correlation between the degree of vacuolation in the alveus and the densities of NFT in CA1 and GI in CA1 and CA2. Conclusion: The pathology most significantly affected the output pathways of the hippocampus, lesions were topographically distributed, and hippocampal pathology may be one factor contributing to cognitive decline in PSP.
Resumo:
The spatial pattern of the vacuolation ('spongiform change') was studied in the upper and lower laminae of the cerebral cortex, the CA1/CA2 sectors of the hippocampus and the molecular layer of the cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). Individual vacuoles were grouped into clusters, 50 to >1600 μm in diameter and, in the majority of tissue sections, the vacuole clusters were distributed with regular periodicity parallel to the tissue boundary. The size of the vacuole clusters was positively correlated with patient age in the lower laminae of the occipital cortex and the inferior temporal gyrus (ITG) and negatively correlated with age in the hippocampus. In addition, the size of the vacuole clusters was positively correlated with disease duration in the upper laminae of the ITG. The size and distribution of the vacuole clusters suggests that the vacuolation in CJD reflects the degeneration of specific brain pathways and supports the hypothesis that prion pathology may spread through the brain along well defined anatomical pathways. (C) 2000 Elsevier Science Ireland Ltd.
Resumo:
The densities of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) in the frontal and temporal lobe were determined in ten patients diagnosed with Pick's disease (PD). The density of PB was significantly higher in the dentate gyrus granule cells compared with the cortex and the CA sectors of the hippocampus. Within the hippocampus, the highest densities of PB were observed in sector CA1. PC were absent in the dentate gyrus and no significant differences in PC density were observed in the remaining brain regions. With the exception of two patients, the densities of SP and NFT were low with no significant differences in mean densities between cortical regions. In the hippocampus, the density of NFT was greatest in sector CA1. PB and PC densities were positively correlated in the frontal cortex but no correlations were observed between the PD and AD lesions. A principal components analysis (PCA) of the neuropathological variables suggested that variations in the densities of SP in the frontal cortex, temporal cortex and hippocampus were the most important sources of heterogeneity within the patient group. Variations in the densities of PB and NFT in the temporal cortex and hippocampus were of secondary importance. In addition, the PCA suggested that two of the ten patients were atypical. One patient had a higher than average density of SP and one familial patient had a higher density of NFT but few SP.
Resumo:
It is becoming clear that the detection and integration of synaptic input and its conversion into an output signal in cortical neurons are strongly influenced by background synaptic activity or "noise." The majority of this noise results from the spontaneous release of synaptic transmitters, interacting with ligand-gated ion channels in the postsynaptic neuron [Berretta N, Jones RSG (1996); A comparison of spontaneous synaptic EPSCs in layer V and layer II neurones in the rat entorhinal cortex in vitro. J Neurophysiol 76:1089-1110; Jones RSG, Woodhall GL (2005) Background synaptic activity in rat entorhinal cortical neurons: differential control of transmitter release by presynaptic receptors. J Physiol 562:107-120; LoTurco JJ, Mody I, Kriegstein AR (1990) Differential activation of glutamate receptors by spontaneously released transmitter in slices of neocortex. Neurosci Lett 114:265-271; Otis TS, Staley KJ, Mody I (1991) Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 545:142-150; Ropert N, Miles R, Korn H (1990) Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. J Physiol 428:707-722; Salin PA, Prince DA (1996) Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 75:1573-1588; Staley KJ (1999) Quantal GABA release: noise or not? Nat Neurosci 2:494-495; Woodhall GL, Bailey SJ, Thompson SE, Evans DIP, Stacey AE, Jones RSG (2005) Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus 15:232-245]. The function of synaptic noise has been the subject of debate for some years, but there is increasing evidence that it modifies or controls neuronal excitability and, thus, the integrative properties of cortical neurons. In the present study we have investigated a novel approach [Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884-2896] to simultaneously quantify synaptic inhibitory and excitatory synaptic noise, together with postsynaptic excitability, in rat entorhinal cortical neurons in vitro. The results suggest that this is a viable and useful approach to the study of the function of synaptic noise in cortical networks. © 2007 IBRO.
Resumo:
The density of Lewy bodies (LB), senile plaques (SP), and neurofibrillary tangles (NFT) was studied in the temporal lobe in four patients diagnosed with ‘pure’ dementia with Lewy bodies (DLB) and eight patients diagnosed with DLB with associated Alzheimer’s disease (DLB/AD). In both patient groups, the density of LB was greatest in the lateral occipitotemporal gyrus (LOT) and least in areaas CA1 and CA4 of the hippocampus. In DLB/AD, the densities of SP and NFT were greatest in the cortical regions and in area CA1 of the hippocampus respectively. Mean LB densities in the temporal lobe were similar in ‘pure’ DLB and DLB/AD patients but mean SP and NFT densities were greater in DLB/AD. No significant correlations were observed between the densities of LB, SP and NFT in any brain region. The data suggest that in the temporal lobe LB and SP/NFT are distributed differently; SP and NFT in DLB/AD are distributed similarly to ‘pure’ AD and also that LB and AD pathologies appear to develop independently. Hence, the data support the hypothesis that some cases of DLB combine the features of DLB and AD.
Resumo:
The principal components of classical senile plaques (SP) in Alzheimer's disease (AD) appear to be A4/beta protein and paired helical filaments (PHF). A4 deposits may evolve into classical SP in brain regions vulnerable to the formation of PHF. We have investigated the diatribution of A4 deposits using an immunostain and the neurofibrillary change using the Gallyas stain in various regions of the hippocampus. This region is particularly affected in AD and also has relatively restricted inputs and outputs. In 6 patients we found a significant preponderance of A4 deposits in the adjacent parahippocampal gyrus (PHG) compared with all regions of the hippocampus. However, plaque-like clusters of PHF (Gallyas plaques) were more abundant in the subiculum while neurofibrillary tangles (NFT) were more abundant in the subiculum and region CA1 compared with the PHG and other hippocampal regions. Hence, A4 deposits appear to be concentrated in the region providing a major input into the hippocampus while the neurofibrillary changes are characteristic of the major output areas (subiculum and CA1). Hence, the data suggest that A4 formation and the neurofibrillary changes may occur in regions of the hippocampus that are connected anatomically.
Resumo:
Mutations of the progranulin (GRN) gene are a major cause of familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). We studied the spatial patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and neuronal intranuclear inclusions (NII) in histological sections of the frontal and temporal lobe in eight cases of FTLD-TDP with GRN mutation using morphometric methods and spatial pattern analysis. In neocortical regions, the NCI were clustered and the clusters were regularly distributed parallel to the pia mater; 58% of regions analysed exhibiting this pattern. The NII were present in regularly distributed clusters in 35% of regions but also randomly distributed in many areas. In neocortical regions, the sizes of the regular clusters of NCI and NII were 400-800 µm, approximating to the size of the modular columns of the cortico-cortical projections, in 31% and 36% of regions respectively. The NCI and NII also exhibited regularly spaced clustering in sectors CA1/2 of the hippocampus and in the dentate gyrus. The clusters of NCI and NII were not spatially correlated. The data suggest degeneration of the cortico-cortical and cortico-hippocampal pathways in FTLD-TDP with GRN mutation, the NCI and NII affecting different clusters of neurons.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than a-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than a-internexin IHC.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or a-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ???, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.
Resumo:
Corticobasal degeneration (CBD) is a rare, progressive movement disorder characterized neuropathologically by widespread neuronal and glial pathology including tau-immunoreactive neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), and astrocytic plaques (AP). However, ß -amyloid (A ß) deposits have been observed in the cerebral cortex and/or hippocampus in some cases of CBD. To clarify the role of Aß deposition in CBD, the densities and spatial patterns of the Aß deposits were studied in three cases. In two cases, expressing apolipoprotein E (APOE) genotypes 2/3 or 3/3, the densities of the Aß deposits were similar to those in normal elderly brain. In the remaining case, expressing APOE genotype 3/4, Aß deposition was observed throughout the cerebral cortex, sectors CA1 and CA2 of the hippocampus, and the molecular layer of the dentate gyrus. The densities of the Aß deposits in this case were typical of those observed in Alzheimer's disease (AD). In the three cases, clustering of Aß deposits, with clusters ranging in size from 200 to >6400 µm in diameter, was evident in 25/27 (93%) of analyses. In addition, the clusters of Aß deposits were regularly distributed parallel to the tissue boundary in 52% of analyses, a spatial pattern similar to that observed in AD. These results suggest: (1) in some CBD cases, Aß pathology is age-related, (2) more extensive Aß deposition is observed in some cases, the density and spatial patterns of the Aß deposits being similar to AD, and (3) extensive deposition of Aß in CBD may be associated with APOE allele e4.
Resumo:
The temporal lobe is a major site of pathology in a number of neurodegenerative diseases. In this chapter, the densities of the characteristic pathological lesions in various regions of the temporal lobe were compared in eight neurodegenerative disorders, viz., Alzheimer’s disease (AD), Down’s syndrome (DS), dementia with Lewy bodies (DLB), Pick’s disease (PiD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), sporadic Creutzfeldt-Jakob disease (sCJD), and neuronal intermediate filament inclusion disease (NIFID). Temporal lobe pathology was observed in all of these disorders most notably in AD, DS, PiD, sCJD, and NIFID. The regions of the temporal lobe affected by the pathology, however, varied between disorders. In AD and DS, the greatest densities of ?-amyloid (A?) deposits were recorded in cortical regions adjacent to the hippocampus (HC), DS exhibiting greater densities of A? deposits than AD. Similarly, in sCJD, greatest densities of prion protein (PrPsc) deposits were recorded in cortical areas of the temporal lobe. In AD and PiD, significant densities of neurofibrillary tangles (NFT) and Pick bodies (PB) respectively were present in sector CA1 of the HC while in CBD, the greatest densities of tau-immunoreactive neuronal cytoplasmic inclusions (NCI) were present in the parahippocampal gyrus (PHG). Particularly high densities of PB were present in the DG in PiD, whereas NFT in AD and Lewy bodies (LB) in DLB were usually absent in this region. These data confirm that the temporal lobe is an important site of pathology in the disorders studied regardless of their molecular ‘signature’. However, disorders differ in the extent to which the pathology spreads to affect the HC which may account for some of the observed differences in clinical dementia.
Resumo:
The α-synuclein-immunoreactive pathology of dementia associated with Parkinson disease (DPD) comprises Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG). The densities of LB, LN, LG together with vacuoles, neurons, abnormally enlarged neurons (EN), and glial cell nuclei were measured in fifteen cases of DPD. Densities of LN and LG were up to 19 and 70 times those of LB, respectively, depending on region. Densities were significantly greater in amygdala, entorhinal cortex (EC), and sectors CA2/CA3 of the hippocampus, whereas middle frontal gyrus, sector CA1, and dentate gyrus were least affected. Low densities of vacuoles and EN were recorded in most regions. There were differences in the numerical density of neurons between regions, but no statistical difference between patients and controls. In the cortex, the density of LB and vacuoles was similar in upper and lower laminae, while the densities of LN and LG were greater in upper cortex. The densities of LB, LN, and LG were positively correlated. Principal components analysis suggested that DPD cases were heterogeneous with pathology primarily affecting either hippocampus or cortex. The data suggest in DPD: (1) ratio of LN and LG to LB varies between regions, (2) low densities of vacuoles and EN are present in most brain regions, (3) degeneration occurs across cortical laminae, upper laminae being particularly affected, (4) LB, LN and LG may represent degeneration of the same neurons, and (5) disease heterogeneity may result from variation in anatomical pathway affected by cell-to-cell transfer of α-synuclein. © 2013 Springer-Verlag Wien.
Resumo:
It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs) such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ), the toxic trigger for Alzheimer's disease (AD), interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs). Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs) in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT). The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline. © 2013 Pirttimaki et al.